Projecting Confidence: How the Probabilistic Horse Race Confuses and Demobilizes the Public

Sean Jeremy Westwood, Dartmouth College
Solomon Messing, Acronym
Yphtach Lelkes, University of Pennsylvania

Recent years have seen a dramatic change in horse-race coverage of elections in the United States—shifting focus from late-breaking poll numbers to sophisticated meta-analytic forecasts that emphasize candidates’ chance of victory. Could this shift in the political information environment affect election outcomes? We use experiments to show that forecasting increases certainty about an election’s outcome, confuses many, and decreases turnout. Furthermore, we show that election forecasting has become prominent in the media, particularly in outlets with liberal audiences, and show that such coverage tends to more strongly affect the candidate who is ahead—raising questions about whether they contributed to Trump’s victory over Clinton in 2016. We bring empirical evidence to this question, using American National Election Studies data to show that Democrats and Independents expressed unusual confidence in a decisive 2016 election outcome—and that the same measure of confidence is associated with lower reported turnout.

I don’t know how we’ll ever calculate how many people thought it was in the bag, because the percentages kept being thrown at people—“Oh, she has an 88% chance to win!”
—Hillary Clinton quoted in Traister (2017)

Political information about electoral competition is central to the study of political behavior. It can alter the strategic calculus used to decide whether or not to show up to the polls (e.g., Ansolabehere and Iyengar 1994; Delli Carpini 1984; Mutz 1998); after all, why should a voter take hours off work and arrange a trip to their polling place if they are certain one side will win or lose? Horse-race coverage may play an outsized role in this calculus as it is widely available and dominates coverage of substantive issues in American elections (Iyengar, Norpoth, and Hahn 2004; Patterson 2016).

Yet as we show, the dynamics between horse-race coverage and voter behavior are shifting because of a form of horse-race coverage that has emerged in recent elections: the probabilistic forecast. In contrast to traditional horse-race coverage that often focuses on unusual polls (Searles, Ginn, and Nickens 2016) or speculates about a candidate’s “paths to victory” (Silver 2017) these forecasts aggregate polling data into a concise probability of winning, providing far more conclusive information about the state of a race.

In this article, we show that probabilistic forecasts have fundamentally altered the political information environment, because they are (1) widely available in the media, (2) lead voters to different assessments of electoral competition and whether their vote matters (pivotality) compared to traditional vote share estimates, and (3) affect potential supporters of one political party more than another. We first show that probabilistic forecasts are highly salient in the mainstream media and provide evidence of their importance by documenting downstream effects on markets. We also show that they are more prominent in media outlets with left-leaning audiences. Using a survey experiment, we show that not only do these forecasts confuse some potential voters, they also lower perceptions that an election is competitive. Finally, we present an original behavioral game that simulates elections, which shows that probabilistic forecasts reduce voting...
as forecasts diverge from 50:50 odds, while vote share projections have no similar detectable effect.

Pivotality and Electoral Behavior

Whether the horse race distracts voters from issues (Boudreau and McCubbins 2010; Hardy and Jamieson 2005; Iyengar et al. 2004; Patterson 2005) or provides useful information about candidates (Bartels 1988; Mutz 1998), it undoubtedly provides information to voters about candidate’s relative public support and the closeness of a race. Information about closeness can give voters a sense of whether their vote might matter, which ties into long-standing theories about why people vote. Work by Downs (1957) and Riker and Ordeshook (1968) on the calculus of voting points out that the strictly “rational voter” will not vote, because the actual odds of one person’s vote being decisive in an election are near zero. The widely used formalization in Riker and Ordeshook (1968) follows: if \(P \) is the (perceived) probability of casting the decisive vote, \(B \) is the expected benefit of winning, \(D \) is the utility of voting or sense of “civic duty,” and \(C \) is the cost of voting, then one should vote if \(P \times B + D > C \).

In addition to introducing the “civic duty” term, Riker and Ordeshook (1968) address this “rational voter paradox” by pointing out that people may perceive that their vote can influence the outcome of an election if it is close, despite long odds that they are actually pivotal. This conjecture is also consistent with the decision literature, which suggests that voters will tend to overestimate the odds that they might cast the pivotal vote, because of the tendency to overweight the likelihood of salient but extremely rare events in decision-making (Barberis 2013; Fehr-Duda and Epper 2012; Tversky and Kahneman 1992)

Moreover, a potential voter’s perception of the chances of casting a pivotal vote, \(P \), depends on the information available to voters about the state of the race. We posit that if potential voters do not have conclusive information about who is expected to win a race, they should perceive meaningful uncertainty around \(P \)—their vote could matter. That means the payoff of voting, \(P \times B \) in the model above, should be nonzero. Thus turnout should be (negatively) affected by more conclusive information about the state of a race.¹

Past work provides evidence that more conclusive information about the state of a race does indeed depress turnout. Some of the best evidence comes from work that analyzes the effects of releasing exit polling results before voting ends, which clearly removes uncertainty. Work examining the effects of East Coast television networks’ “early calls” for one candidate or another on West Coast turnout generally find small but substantively meaningful effects, despite the fact that these calls occur late on election day (Delli Carpini 1984; Sudman 1986). Similar work exploiting voting reform as a natural experiment shows a full 12 percentage point decrease in turnout in the French overseas territories that voted after exit polls were released (Morton et al. 2015). These designs also isolate the effect of information about closeness from campaigns’ tendencies to invest more in campaigns in competitive districts.

Other aggregate-level studies find similar patterns consistent with a relationship between uncertainty and turnout. First of all, a large body of literature has demonstrated robust correlations between tighter elections and higher turnout (see Cancela and Geys [2016] and Geys [2006] for reviews). Furthermore, Nicholson and Miller (1997) provide evidence from statistical models that prior election returns also explain turnout above and beyond campaign spending, particularly when good polling data are unavailable. With American National Election Studies (ANES) data we show that from 1952 to 2016, people who said that one candidate would “win by quite a bit” in pre-election polling were less likely to vote, even after conditioning on prior turnout, year, party, and actual electoral college and popular vote margin (see table A2, fig. A3; tables A1–A22 and figs. A1–A4 are available online).

Field experiments provide additional evidence of a causal effect of perceptions of electoral closeness on turnout. This literature finds substantive effects on turnout when polling results showing a closer race are delivered via telephone (among those who were reached, Biggers et al. 2017) but null results when relying on postcards to deliver closeness messages (for which it is not possible to verify the treatment was actually read; Biggers et al. 2017; Gerber et al. 2017).² Finally, one study conducted in the weeks leading up to the 2012 presidential election found higher rates of self-reported, post-election turnout when delivering ostensibly polling results less consistent with the extant polling data showing a comfortable Obama lead.

¹ This conjecture parallels Matsusaka (1995), who points out that the Riker and Ordeshook (1968) model does not account for the information available to the potential voter. Rather, the expected benefit \(B \) must be conditional on the voter’s confidence in her expectations of the future consequences of policies that each candidate is likely to enact. This modification to earlier models better explains empirical patterns such as the association between higher turnout and phenomena related to better information about the \(B \) term, such as education, aggregate campaign spending, and elite level issue polarization.

² Emphasizing the closeness of an election in the context of canvassing has a large effect on turnout compared to no contact but is not necessarily stronger than other messages crafted to mobilize voters (Dale and Strauss 2009; Enos and Fowler 2014; Gerber and Green 2000). However, these studies do not directly manipulate closeness.
How might probabilistic election forecasts affect perceptions of closeness and thus voting behavior? We hypothesize that by providing potential voters with conclusive information about who is expected to win a race, probabilistic forecasts may remove meaningful ambiguity around \(P \), removing the perception that their vote could matter. We test this hypothesis in study 1. We test the hypothesis that probabilistic forecasts remove the incentive to vote by removing uncertainty in study 2. But first, we delve deeper into the reasons why probabilistic forecasts create certainty about what will happen in an election.

THE PROBABILISTIC HORSE RACE

While traditional horse-race coverage provides the information potential voters use to gauge electoral competition, probabilistic election forecasts provide far more conclusive information about the state of a race. This means that probabilistic forecasts offer an opportunity for careful testing of some of the underlying dynamics explaining voter behavior—how flexible are perceptions of pivotality, and how does that map on to voter behavior.

These forecasts consist of complex meta-analyses that aggregate polls to reduce bias and other forms of error from one-off polling (Hillygus 2011; Toff 2017). The rigor that goes into these forecasts was underscored in 2008 when FiveThirty-Eight successfully predicted nearly every state’s Senate race and presidential result (Silver 2008). What is more, when news outlets cover traditional polls, they tend to focus on swings and unusual results (Sears et al. 2016) and may provide speculative commentary about presidential candidates’ potential “paths to victory,” creating considerably more uncertainty compared with a conclusive, quantitative prediction from an election forecast (Silver 2017).

Yet the most powerful source of certitude may be the way that these forecasts present their results to potential voters. Probabilistic forecasts present the probability of winning, \(P(V_{share} > .5) \) among the top two candidates, instead of the expected vote share, \(E(V_{share}) \). Small differences in vote share estimates—the election metric most familiar to the public—generally correspond to very large differences in the probability of a candidate’s chance of victory. And to map between \(P(V_{share} > .5) \) and \(E(V_{share}) \) would require potential voters to perform a transformation such as: \(P(V_{share} > .5) = 1 - \Phi(\frac{.5 - \bar{\mu}_i}{\sigma_i}) \), which means they need to have an estimate of the variance \(\sigma_i^2 \) and a relatively sophisticated background in statistics.²

By combining the vote share and variance, probabilistic forecasts were designed to provide audiences with a better understanding of what the extant polling data tells us about a race. For example, consider a candidate who is projected to get 55% of the vote. The actual chance she will win is very different if the variance translates to a margin of error of ±1 compared with ±6. By converting the vote share and variance estimates into a probability, these forecasts are meant to help audiences better understand these two very different scenarios. But the result is numbers that are much higher (lower) than vote share estimates, and as we will show below, creates far more certainty about which candidate will win among the electorate.

This problem is compounded because it is so difficult to fully account for the variance, that is, to accurately estimate total survey error (TSE). In fact, work has found that TSE is often about twice as large as the estimates of sampling error provided in many polls (Shirani-Mehr et al. 2018). If the forecaster does not account for a total survey error—including errors that may be correlated across surveys (Silver 2014)—she will artificially inflate the estimated probability of a candidate’s victory or defeat.⁴ This phenomenon accounts for why so many forecasters in 2016 had Clinton’s odds of victory above 90%. The Electoral College further complicates things as voters are actually dealing with the challenge of synthesizing a wide range of both state and national polling along with uncertainty about how state-level results might add up to electoral victory.

There are other reasons to expect that people will have difficulty reasoning about the probabilities that such forecasts present. With infrequent events like elections, people lack a reference point to understand probabilities in context, which induces erroneous behavior and thinking (Kunreuther, Novemsky, and Kahneman 2001). For example, given our familiarity with weather forecasts, we likely wouldn’t leave the house without an umbrella if forecasters projected a 35% chance of rain. However, elections are so rare and probabilistic forecasts so new that a 35% chance of victory lacks context.

People also tend to think in qualitative terms about the likelihood of specific events (Keren 1991; Sunstein 2002); if candidate A has an 85% chance of victory, they see victory the likely outcome (this may help explain why after the 2016 election, so many criticized forecasters for “getting it wrong”; Lohr and Singer 2017; Neyfakh 2017). But even which is particularly useful when for example drawing \(J \) simulated electoral college outcomes. Similarly, the vote share and standard error thereof can be estimated by taking the average and standard deviation of \(\bar{\mu}_i \).

4. Although this will also result in underestimates of the margin of error that often accompany vote share projections, the point is largely moot—as we show that people tend to ignore these estimates (see the appendix). They may not be well equipped to interpret margins of error regardless (Gigerenzer et al. 2007; Hoekstra et al. 2014).

² Variance estimates are not usually provided, though the margin of error often is. Forecasts can also use nonparametric estimates based on simulation such as \(\frac{1}{N} \sum_{i=1}^{N} I(\bar{\mu}_{i} > .5) \) to estimate the probability of victory,
more generally, one-off event probabilities—candidate A has an 85% chance of winning—are often misunderstood (Gig- renzer et al. 2007) compared to statements such as “if the election were repeated 1,000 times, candidate A would win 850 times; candidate B 150 times.”

Furthermore, people sometimes conflate probabilistic forecasts with vote share projections, and incorrectly conclude that candidate A is projected to win 85% of the vote rather than to having an 85% chance of winning the election. We provide evidence for this in study 1.

Finally, motivated reasoning may be more prevalent when people are interpreting probabilities versus interpreting vote share predictions. Because probabilities, by definition, convey uncertainty, people may bias their decisions in favor of a preferred outcome when interpreting this uncertainty (Piercey 2009). For instance, whether a person interprets a 60% chance of candidate A as particularly likely or not may depend on whether or not that person wants candidate A to win or not.

EMPIRICAL CONTEXT: THE REACH AND POTENTIAL CONSEQUENCES OF FORECASTING

Recent years have seen the rising prominence of election forecasts, especially those that present their projections in terms of probabilities. However, news consumers do not need to visit forecasting websites like FiveThirtyEight.com to be exposed to probabilistic forecasts. At least in the context of the 2016 presidential campaign, probabilistic forecasts were widely available in US news outlets and constituted an important part of the national conversation.5 In 2016, people mentioned forecasts dozens of times per day on cable news, visited websites offering forecasts at rates approaching major national media outlets, shared forecasts on social media at rates higher than major collections of polling data, and conducted millions of search queries to find these websites (fig. 1). The audience for probabilistic forecasts in the United States has not been distributed evenly across the political divide, leaning left. Table 1 shows that an index of the average ideology of users who share each domain, or ideological “alignment” (Bakshy, Messing, and Adamic 2015).6 Every website hosting a probabilistic election forecast leans left. The only poll aggregator with a conservative alignment score, realclearpolitics.com, does not display probabilistic forecasts. What is more, forecasts appear more often on channels with a more consistently liberal audience (as defined in Bakshy et al. 2015; Mitchell et al. 2014).

While those on the left appeared more likely to see probabilistic forecasts in 2016, they also were more likely than independents or Republicans to believe that one candidate would “win by quite a bit” in ANES data (fig. 2). Indeed, more than 30% of Democratic respondents to the 2016 ANES expected Clinton to win by a comfortable margin, the highest proportion in the 2000s era of close electoral contests.

What is more, those who have stated that they expect one candidate to win by quite a bit are about 2.5% less likely to vote than those who believe a race to be close (fig. 3). One remaining question is whether probabilistic forecasts may have fallen out of favor or lost their influence after what many perceive as their failure to forecast the 2016 election accurately. One way to interrogate this possibility is to revisit the question of whether probabilistic forecasts influence betting markets (raised in Tucker 2012). We exploit a transitory error in FiveThirtyEight’s real-time 2018 US House forecast to shed light on all of these questions (fig. 4). On election night 2018, FiveThirtyEight’s real-time forecast had GOP’s odds of taking the House spiking at 60% at around 8:15 p.m. (first reported in Smith and Greeley 2018), because it was making biased inferences from partial vote counts (Silver 2018). Shortly after, FiveThirtyEight changed its forecasting algorithm to wait for projections instead. However, during this period, the betting market PredictIt reported odds on a GOP victory moving above 50%. US government bond yields also saw a brief spike of 2–4 basis points—which financial experts suggest was because markets expected to see more inflation under a Republican House (high spending, low taxes). These experts pointed out that this was unlikely to be mere noise because little else was happening in the United States, and it was 1:00 a.m. in the United Kingdom, where the only market trading at the time was open (Smith and Greeley 2018). These results suggest that probabilistic forecasts are still salient and influential, even after 2016.

In some ways, the widespread success and reliance on these forecasts represent a triumph of scientific communication. In addition to greater precision compared with one-off horse-race polls, probabilistic forecasts can quantify how likely a given US presidential candidate is to win using polling data and complex simulation, rather than leaving the task of making sense of state and national polls to speculative commentary about “paths to victory” (Silver 2017). Furthermore, aggregating all polls reduces the ability of news outlets to focus on unusual polls that are more sensational or support a particular narrative (Searles et al. 2016).

However, as we show later, these forecasts increase perceived certainty about election outcomes and can lower voter
turnout. With a survey experiment, we show that (1) presenting win probabilities increases the public’s certainty that the leading candidate will win, compared to expected vote share; and (2) roughly 1 in 10 people confuse probabilistic forecasts with vote share estimates (but not vice versa). Finally, we use a behavioral game to show that probabilistic estimates have substantively meaningful effects on voting above and beyond vote share estimates. The magnitude of the effects found here, the prevalence of probabilistic forecasts, and the small margins of recent presidential elections mean that these forecasts may have an impact on prominent elections.

STUDY 1: THE PERCEPTUAL CONSEQUENCES OF PROBABILISTIC FORECASTS

Our first study shows that, relative to horse-race-style vote share estimates, presenting the probability a candidate will win simultaneously increases certainty about the ultimate victor and creates confusion. We rely on a dose-response experimental design and 4,151 respondents from wave 25 of Pew Research Center’s American Trends Panel.

Our design relies on the fact that probabilistic forecasts present essentially the same information as vote share estimates with an accompanying margin of error in qualitatively

<table>
<thead>
<tr>
<th>Domain</th>
<th>Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>fivethirtyeight.com</td>
<td>-.5225</td>
</tr>
<tr>
<td>nytimes.com</td>
<td>-.5469</td>
</tr>
<tr>
<td>huffingtonpost.com</td>
<td>-.6176</td>
</tr>
<tr>
<td>realclearpolitics.com</td>
<td>.6616</td>
</tr>
</tbody>
</table>
different ways. In fact, any electoral projection based on one or more polls can be presented in either form. This is true regardless of how the underlying data are aggregated, weighted, modeled to account for correlated errors and combined with other economic or nonsurvey data.7

Participants in our study saw a hypothetical US Senate race, where “candidate A supports the majority of the policies you support and is well qualified for the job” (implying copartisanship) and “candidate B does not share your views and is less qualified than candidate A.” They then read a hypothetical projection based ostensibly on recently fielded surveys analyzed by “a prominent group of statisticians.” The actual projection was randomly assigned to present candidate A’s average projected vote share—$E(V_{\text{av}_{\text{A}}})$, probability of winning—$P(V_{\text{av}_{\text{A}}} > .5)$, or both (see table 2).8

For ease of interpretation, we pooled across two additional factors—the presence of a margin of error (or not) and order.9 Among conditions displaying the vote share, a margin of error of $\pm 2\%$ was displayed to half of the participants in those conditions. Among conditions displaying both the vote share and the win probability, half were randomly assigned to see the vote share appear first, half to see the win probably first. Displaying the margin of error had no effect on judgments about the state of the race or certainty. Displaying the win probability first resulted in slightly more extreme estimates of candidate A’s likelihood of victory and slightly more certainty about those judgments (see table A8).

Estimates of candidate A’s vote share were randomly assigned to one of 10 integer values between 45% and 55%. A plausible frequentist 95% confidence interval (CI) of $\pm 2\%$ was generated by simulating 20 surveys of 1,000 people (see the appendix, available online, for details). Based on the same variance estimates, we also estimated the probability that candidate A would get $>50\%$ of the vote and win the hypothetical election, which ranged from 13% to 87%.”10

We rely on mapping the probability of victory to an estimate of the vote share accompanied by a 95% CI, which in turn relies on the fact that both depend on the underlying distribution of a candidate’s vote share. We estimated the expected vote share in our projection by the average of (hypothetical) survey sample means $\bar{\mu}_i = \frac{1}{N} \sum x_i$ and the 95% CI by $\bar{\mu}_i \pm t_{\alpha/2, N-1} \times (\hat{\sigma}_i / \sqrt{N})$, where i indexes each survey and N is the total number of surveys.11 As is true of weighted, adjusted, and/or modeled estimate of $\bar{\mu}_i$ and $\hat{\sigma}_i$, the probability of victory, or $P(\mu_{\text{av}_{\text{A}}} > .5)$ can then be estimated by $1 - \Phi([\bar{\mu}_i - .5] / \hat{\sigma}_i)$. Alternatively, nonparametric estimates based on simulation such as $\frac{1}{N} \sum I(\mu_{\text{av}_{\text{A}}} > .5)$ can be used to estimate the probability of victory, which is particularly useful when for example drawing J simulated electoral college outcomes. Similarly, the vote share and standard error thereof can be estimated by taking the average and standard deviation of $\bar{\mu}_{(i)}$.

Respondents judged (1) how certain they were that candidate A would win or lose on a five-point scale, which we transform so that all values fall between 0 and 1, (2) the share of the vote they expected candidate A to receive, and (3) how likely they thought candidate A was to win (both on a 0–100 point scale).

Presenting aggregated survey estimates as a probability created the impression that a candidate will win more decisively (fig. 5). After seeing our vignette, respondents reported being on average 7% more certain in their judgments about who would win after we presented the probability of victory (“likely to win” condition) compared with the vote-share estimate (“vote share”; $\beta = 0.07$, $T = 7.0$, $P = 3.7 \times 10^{-11}$; see also table A6). This effect was substantially

7. Most major election forecasters in 2016 presented their projections both ways, but win probabilities were generally more prominent than electoral college vote share estimates.

8. The fact that this is a Senate race might prompt questions regarding whether survey error might be substantially higher than in a typical presidential race, such that a high win probability would map to a larger difference in vote share than what we present here. Yet there is little evidence that respondents considered survey error in formulating their responses, based on the fact that presenting the margin of error alongside the vote share had no effect on any outcome.

9. Results disaggregating these factors are consistent and are presented in tables A7 and A8.

10. We use parameters typical of real-world surveys; under certain unusual conditions that result in dramatically higher variance (e.g., less than five responses per survey) win-probability numbers can be smaller than vote share estimates.

11. We do not need to employ complex modeling strategies that adjust for correlated errors or population covariates here, because we are drawing simulated data directly from a known and fully specified hypothetical population.
stronger when the candidate was ahead in the polls, as shown in figure 5.

Respondents also reported significantly more extreme judgments of vote share when they saw win probabilities compared with vote share in our vignette ($\beta = 1.49, T = 8.92, P < 2 \times 10^{-14}$; see also table A6). For example, when presented with vote share estimates that candidate A would win 55% of the vote, participants expected candidate A to get 56.5% of the vote (95% CI: 55.3%, 57.6%). When presented with the commensurate 87% probability that candidate A would win, participants expected candidate A to get 64.6% of the vote (95% CI: 63.0%, 66.2%)—an 8 percentage point difference.

When estimating the likelihood of victory, respondents reported estimates far closer to 50:50 than the information provided in the vignette, across all conditions. This was particularly true for projections further away from a neck-and-neck race. Even when presented with a forecast putting candidate A’s chance of victory at 87%, the average participant said the likelihood of A’s victory was 69.9% (95% CI: 67.9%, 71.9%)—a 17 percentage point difference. When presented with commensurate vote share estimates that put candidate A’s share of the vote at 55%, respondents were more than 27 percentage points off—the average participant reported a 59.6% likelihood that candidate A would win (95% CI: 58.1%, 61.0%).

It is not surprising that respondents who saw vote share more accurately reported the vote share and that respondents who saw probabilities more accurately reported probabilities—we would be concerned that respondents were not paying attention if this were not the case. The more interesting comparison involves the reported vote share among those who saw probabilities: when faced with a high probability of winning, respondents reported vote share as if they expected a blowout. Yet in the condition that provided vote share, likelihood hovered around 50:50. In fact, the total error in estimating
the likelihood of winning is huge, compared with the error in reporting vote share, irrespective of condition. And the error is in the direction of 50:50 odds.

This raises the question of why respondents shrank their estimates of the odds of victory so aggressively toward 50:50. In an ideal world where respondents have a deep knowledge of statistics, we would expect them to shrink estimates toward 50:50, because most forecasters underestimate total survey error (Shirani-Mehr et al. 2018) and hence forecasting error, providing odds that are too far from 50:50. Likewise, because many things can happen from the time a forecaster analyzes polling results until election day, it might make sense to further shrink estimates toward 50:50. And even if we assume most respondents lack this sophistication, respondents may still have good reason to shrink what they reported toward 50:50, based on broad coverage of forecasters' inflated estimates of a Clinton victory in 2016, irrespective of whether they understand that this was in large part due to their failure to properly account for total error.

Another potential factor, which is supported by evidence, is that some respondents did not seem to process the distinction between vote share and likelihood of victory. Indeed, 38% of participants reported the same number for vote share and likelihood of victory. Respondents were significantly less likely to make this mistake in the “both” condition, in which they saw distinct vote share and win probability estimates, \(M_{\text{both}} = 0.34 \), \(M_{\text{others}} = 0.40 \), \(T(3570.6) = 4.29, P < 2 \times 10^{-5} \). What is more, when participants reported the same numbers, they tended to provide assessments of the win likelihood that were closer to the vote share than the probability of winning provided in the experiment. In fact, even in the full sample, the average distance between reported likelihood and provided vote share is lower than the average distance between reported likelihood and provided win likelihood, even in the win-likelihood condition, as shown in figure 6.

It seems unlikely that explanations involving respondents simply having difficulty translating between probabilistic forecasts and vote shares can fully explain the shrinkage toward 50:50 we see for respondents’ win-probability estimates. If that were the case, those in the “both” condition would be expected to do equally well compared with those in the win-probability condition. Yet those in the “both” condition engage in more aggressive shrinkage, resulting in lower accuracy than respondents who only see win probability.

This raises the question of how many respondents simply reported the vote share from the experiment as the likelihood and vice versa. This was much more likely when respondents saw win probabilities. In the win-probability-only condition, 8.6% of respondents estimated vote share to be within 1% of the win probability provided. In the condition that provided both win probabilities and vote share projections, 2.1% of respondents estimated vote share to be within 1% of the provided win probability. In the vote-share only condition wherein no win-probability number was provided, 0.6% of respondents estimated vote share to be within 1% of the equivalent win-probability number (see table A7 for more detail). The evidence suggests that a substantial proportion of people have trouble distinguishing between vote share and probabilities and that for many, the “default” mode of thinking is in terms of vote share, rather than in terms of the likelihood a candidate wins.

Finally, we turn to self-reported intent to vote. Around 93% of respondents reported the intent to hypothetically vote in all conditions. After conditioning on past voting history and party, we observed preliminary evidence that participants were slightly less likely to say they would hypothetically vote when seeing more extreme probabilistic forecasts (table A9), though this finding should be considered exploratory.

Of course, it is significantly less effort to report the intent to vote in a survey than to expend the effort required to get to the polls on a Tuesday in the face of potential long lines and competing work/family obligations. Indeed, other work has found null results when examining the effect of closeness on self-reported intent to vote (Ansolabehere and Iyengar 1994).

<table>
<thead>
<tr>
<th>Condition</th>
<th>Display Order</th>
<th>Confidence Interval Displayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vote share</td>
<td>Only one display</td>
<td>813 818</td>
</tr>
<tr>
<td>(P(\text{win}))</td>
<td>Only one display</td>
<td>875 0</td>
</tr>
<tr>
<td>Both (P(\text{win})) first</td>
<td>Vote share first</td>
<td>423 410 413 399</td>
</tr>
</tbody>
</table>

12. Removing these respondents does not substantively alter the results. Because this is measured post-treatment and varies by condition, it could be problematic to present an analysis of the data without these respondents included.

13. These relationships also hold when removing respondents who reported 50% for both their assessment of the vote share and their assessment of the likelihood of victory: 17% of respondents did this.

14. Using an .8 cutoff produces the following numbers: 8.6% in probability of winning condition, 1.9% in the both condition, and 0.6% in the vote share condition. Using a 1.2% cutoff produces the following numbers: 10.3% in probability of winning condition, 3.3% in the both condition, and 1.5% in the vote share condition.
Study 2 below attempts to better capture the economic trade-offs entailed in voting and shows that, when voting presents a nontrivial cost, people do in fact vote at lower rates after viewing probabilistic forecasts that suggest that a win or loss is very likely.

ROBUSTNESS

One concern with study 1 is that we used candidates for the US Senate. It is possible that participants knew that state-level polling is noisier and less credible than the national polling used in presidential forecasts. We conducted a replication study.
that varied the candidate office (US House/US Senate/US President) and found no differences between offices. We used a sample from Amazon Mechanical Turk (N = 275) and a simplified design using two of the 10 numerical values for probability/vote share (45% and 55%). We found no detectable differences in responses by the office sought by the hypothetical candidates (see table A11).

Figure 5 also shows a bias in evaluating candidates that shared respondents’ views, consistent with a tendency toward motivated reasoning when interpreting polling results (Babad and Katz 1991; Dolan and Holbrook 2001). This motivated reasoning effect attenuates significantly when presenting the win probability and asking for evaluations of candidate B, who does not share the participant’s views. In a replication of study 1 (data from Qualtrics Panel, N = 178) we varied the candidate reported to be ahead or behind. In addition to varying the candidate on which information would be provided, the numerical values were randomly varied: 41% chance of victory or 58% chance of victory (we randomly drew these values above and below even odds). When the other candidate was reported to be ahead, respondents were less certain of victory (β = −0.19, T = −2.66, p < .009), reported a smaller expected vote share (β = −13.20, T = −2.50, p = .03), and a lower probability of victory (β = −15.22, T = −2.30, p = .02).

STUDY 2: HOW PROBABILITY FORECASTS AFFECT BEHAVIOR

In what follows, we show that when faced with the costs and benefits of voting in a behavioral game, more extreme probability estimates decrease voting. However, changes in projected vote share estimates have no detectable average effect on behavior. Our data come from 1,171 respondents (5,845 trials) drawn from a national online nonprobability survey panel recruited by Qualtrics Panels.

Participants were instructed that they would ostensibly engage in a game with other participants who were completing the survey. Prior to the game, participants read instructions, reviewed examples and completed comprehension questions. Before each of five rounds, participants were randomly assigned to either team A or team B. At the start of the game (see fig. 7), they were given $15. They were told that voting for their team ($1 cost), increased the chance that their team would win. If their team won [lost], they would earn [lose] $2. In our setup, $1 is the cost to “vote.” Before starting a round, we presented participants with a prevote poll, where we asked about vote intention. Participants were told this would be used along with the responses of other players and information from prior games to calculate the chance that their team would win (following the model for many forecasters). Participants were then shown the results ostensibly calculated from this poll, which included the two-team electoral vote share, randomly assigned to 40–60, and the probability that each team would win, randomly assigned to be between 1 and 50 if a team’s vote share was <50, and 50–90 if the vote share was ≥50.

Game stages (stages 2–6 repeated in each of the five rounds):

1. Instructions, examples, and comprehension questions.
2. Random assignment to team A or team B.
3. Respondents polled on their voting intentions in the round.
4. Presentation of vote share and probability of victory.
5. Decision to vote ($1 cost) or not vote (no cost).
6. Feedback ($2 cost if the participant’s team lost; $2 award if participant’s the team won).

As the probability of winning diverged from 50:50, participants were less likely to vote (β = −0.17, T = −4.1,
However, we detected no effect of vote share extremity on voting ($\beta = -0.13, T = -0.7, p = .48$). Comparing the standardized effects of probability and vote share likewise reveals that probability has a much larger effect (see table A18).

Given the cost of voting and payoffs, people will maximize their winnings if they only vote if $4 \times P(\text{decisive vote}) > 1$, or $P(\text{decisive vote}) > 0.25$, which corresponds to an extremely narrow band around even odds and shrinks as the perceived number of players in the game increases (N). Figure 8 clearly shows that people do not strictly maximize their winnings based on this calculus, but behave in a way more consistent with a qualitative assessment of whether their vote might matter.

For context, consider that 2016 forecasts reported win probabilities between 70% and 99%, giving Clinton an advantage ranging from 20% to 49% beyond 50:50 odds. Clinton ultimately lost by 0.7% in Pennsylvania, 0.2% in Michigan, 0.8% in Wisconsin, and 1.2% in Florida. To the extent that this experiment generalizes to real-world elections, the effects above are large enough to meaningfully alter turnout in marginal states—an increase of 20% over even odds in this study lowered voting by 3.4% (95% CI: 1.8%, 5.1%) and an advantage of 40% lowered the voting by 6.9% (95% CI: 3.6%, 10.2%).

If, as the evidence provided above suggests, Democrats were more affected by probabilistic forecasts in 2016, probabilistic forecasts may have a strong enough effect on turnout to constitute an important factor influencing the election.

ROBUSTNESS

These results are not conditional on a participants’ understanding of probabilities. Following the game, participants completed the Berlin Numeracy test (Cokely et al. 2012), which presents respondents with a series of questions about probabilities in applied situations. We found no significant main effect of numeracy and no interaction between numeracy and forecasted probabilities displayed in the game (see table A19).

Furthermore, our results also do not depend on people confusing vote share with probabilities or incorrectly recalling either value. After each voting round, we asked respondents to report back to us the vote share and probability we supplied for the round. Of those respondents who gave a valid response, 161 respondents reported incorrect probabilities only once, while 36 made the mistake more than once. Removing respondents who made such a mistake does not substantively impact our results (table A15). This stands in contrast to study 1, in which respondents tended to shrink the likelihood estimates they reported toward 50:50. However, in study 2 we directly incentivized attention to the race with money, which should be expected to reduce reporting "50:50" responses. And unlike study 1, there was immediate feedback on the "election," which may have enabled participants to become more familiar with the metric. Finally, it may be that in study 1, respondents reported different results because they do not equate probability and likelihood, and in study 2 we asked about the probability rather than the likelihood.

15. Data were analyzed using a multilevel model with random intercepts for each user because of repeated observations; p-values were estimated based on Satterthwaite approximations to degrees of freedom. We found no evidence of directional differences; see table A16.

16. We also tested the hypothesis that these standardized betas were equivalent using a likelihood ratio test, as implemented in the R function “car::linearHypothesis” (Fox and Weisberg 2011). We can safely reject this null hypothesis, residual $DF_{\text{residual}} = 5552.8$, $DF_{\text{full}} = 5551.8$, $F = 5.67$, $p < .02$.
Some people might have learned that the predictions were inaccurate (random) over time. However, with only five rounds, it would be challenging to detect that predictions were randomly assigned without conducting statistical analysis. Table A16 shows that there were no significant interactions between round and absolute distance between vote share and probabilistic forecast, suggesting that on average this did not affect our results.

Another question is whether respondents simply dismissed vote share as a noisy signal because unlike win probability, it contains no information about precision. However, the polling data were presented as a census. And even if some respondents thought it was a sample or thought about other sources of error, such an effect would be inconsistent with the null effects of displaying measures of precision in study 1. This presentation is also consistent with multiple probabilistic forecasting websites that present the probability of winning and probabilistic forecast, suggesting that on average this did not affect our results.

One way that study 2 differs from a real-world election is that the number of voters is much smaller, which means that a person’s vote is more likely to be pivotal. Players in study 2 were not directly told how many other people were playing, which may have created ambiguity. We explore this issue in additional robustness test for study 2, where we explicitly manipulated group size (N) as reported to participants in a repeated measures design, to gauge whether it attenuated the negative effect of probabilistic forecasts on turnout. We use 238 participants (1,190 trials) drawn from the Qualtrics Panel. We test this question with an interaction term between the probabilistic forecast and the group size.

Prior to the game, participants were told the following: “Many other people are playing this game. Before each round you will be assigned to play with a random group of the total available players.” For each round we randomly drew a value from a power of 2 table: 32, 64, 128, 256, and 512. To make the treatment less obvious, we added random noise (drawn between \([-3, 3]\)) to these values for each round and for each respondent.

We do not find an effect of group N on behavior (table A20) either in the interaction between group N and probabilities (\(\beta = 0.00, T = 0.51, p = .61\)) or in the interaction between group N and vote share (\(\beta = -0.00, T = -0.78, p = .44\)). The inclusion of more people does not attenuate these effects—despite the lower likelihood of a pivotal vote all around, we still see similar effects to those in study 2 above.

Figure 8. Effects of probabilistic forecasts on voting behavior. When presented with both the probability of victory and vote share, participants are less likely to vote as the probability their team will win increases (A) but do not change behavior in response to differences in reported vote share (B). Changes in probabilities from even odds are compared with the final predicted Clinton advantage from various aggregators (C). Lines are marginal effects with 95% confidence bands. Color version available as an online enhancement.
This suggests that people do not calculate pivotality in a manner consistent with a strict interpretation of rational choice theory. These data are more consistent with a model of the world (and much prior work; Keren 1991; Riker and Ordeshook 1968; Sunstein 2002) in which people have a qualitative notion of whether they might plausibly impact the vote—when the probability of a candidate’s victory seems rather low or rather high, they appear less likely to vote.17

Finally, the order of probabilities and vote share was fixed in study 2 (first and second, respectively). It is possible that a primacy or recency effect could bias our attempts to compare the effects of vote share and probabilistic estimates. As part of this last replication study, we randomly varied the order of the information (at the participant-level). We detected no effect of order on behavior (see table A20).

CONCLUSION

We show that probabilistic horse-race coverage lowers perceived electoral competition, confuses many potential voters, and, as odds diverge from 50:50, can have demobilizing effects compared to vote-share projections. Furthermore, these forecasts confuse many—more than a third of people estimate a candidate’s likelihood of winning to be identical to her vote share, and on average people estimate that likelihood to be closer to the vote share than the probability of winning after they see both types of projections. Perhaps most importantly, higher win probabilities, but not vote share estimates, decrease voting in the face of the trade-offs embedded in our economic game (study 2). Taken together, results suggest that forecasting can fundamentally alter the information environment available to potential voters, with the potential to change the outcome of elections.

The media visibility of probabilistic forecasts means their effects may not be limited to turnout—there may be additional downstream effects. Election coverage has secondary effects on donations and mobilization (Mutz 1998), and political cynicism (Cappella and Jamieson 1997). Furthermore, candidates’ perceptions of the closeness of an election can affect campaigning and representation (Enos and Hersh 2015; Mutz 1997). These perceptions can also shape policy decisions—for example, prior to the 2016 election, the Obama administration’s confidence in a Clinton victory was reportedly a factor in the muted response to Russian intervention in the election (Miller, Nakashima, and Entous 2017). Around the same time, FBI Director James Comey said he felt that it was his duty to write a letter to Congress saying he was reopening the investigation into candidate Hillary Clinton’s e-mails because he was certain she would win (Keneally 2018).

This work has other limitations worth noting. First, these findings do not speak to the data underlying probabilistic forecasting, the statistical modeling underpinning projections, or the ultimate accuracy of probabilistic forecasts. Instead, they speak only to how people interpret these forecasts and behave based on those interpretations.

Second, study 1 presents a hypothetical election scenario, which provides a high degree of experimental control but lacks additional contextual information (Grimmer, Westwood, and Messing 2014): for example, media narratives about each candidate/campaign that can translate to smaller real-world effects. On the other hand, there are reasons to expect that the effects we observe may actually be conservative—the stronger salience of party identity combined with motivated reasoning during an actual election may produce considerably larger effects on confidence when a potential voter’s candidate is ahead. Of course, a candidates’ strongest supporters may be both particularly likely to confide in their candidate’s likelihood of victory as they reject evidence to the contrary but also particularly likely to vote no matter what.

Third, the economic game presented in study 2 tests the behavioral consequences of the economic trade-offs related to voting but is not measuring actual voting in an actual election. Furthermore, participants may have had a heightened perception about the potential pivotality of their vote compared to a real-world election due to the smaller pool of voters. However, in an additional experiment, we explicitly manipulated group size as reported to participants, which did not attenuate the effects. While this experimental paradigm offers a high degree of control and opportunities to investigate mechanisms such as those explored in five follow-up studies offered in the appendix, field experimental replications would lend higher ecological validity to these findings.

Although we show that the public have difficulties understanding and correctly responding to probabilistic forecasts, they are a relatively new addition to modern elections. It is possible that the public will gain competency over time as

17. However, pivotality would certainly be larger and easier to compute in smaller groups. To address this, we replicate this robustness test on Amazon Mechanical Turk with 662 participants using groups ranging in size between 4 and 21 and report the results in table A22. Even when group sizes are very small we find no evidence that respondents are computing pivotality. Instead, the participants are simply relying on the reported probability when deciding if they should vote. We recover a main effect of probabilities (β = −0.34, T = −2.85, p = .02) consistent with all our replications. Predicted vote share is not significant (β = 0.37, T = 0.55, p = .37). Most importantly, group size is never substantively large or statistically significant.
exposure grows. We, however, are skeptical. Despite the problems with the 2016 forecast, voters are still likely to rely on probabilistic information (even Democrats who might have strong reasons to mistrust such forecasts). In general, humans—even outside the context of elections (e.g., Gigerenzer and Edwards 2003; Gigerenzer et al. 2005)—consistently demonstrate such profound ineptness with probabilities that even a massive effort to educate the public on how to interpret election probabilities is likely to have little effect. The problem, we think, is not deficits in education or irresponsible media narratives but simply that probabilities are inherently unintuitive.

While forecasts are only one among many factors in play during an election, our work suggests that they can affect perceptions and ultimately outcomes, particularly in light of the media visibility in 2016. Given the far stronger effects for probabilistic forecasts compared with vote share projections, those concerned about the effects of polling—from depressing turnout (Morton et al. 2015; Mutz 1998) to other political calculations (Enos and Hersh 2015)—should be especially attentive to probabilistic forecasts.

ACKNOWLEDGMENTS

The authors are grateful for helpful feedback from Kevin Arceneaux, Michael Delli Carpini, Claudia Deane, Michael Dimock, Dean Eckles, Ryan Enos, Jeffrey Friedman, Eitan Hersh, Dan Hopkins, Yusaku Horiuchi, Scott Keeter, Shiro Kuribayashi, Justin Grimmer, Justin H. Gross, Guy Grossman, Adam Hughes, Jocelyn Kiley, Courtney Kennedy, Onyi Lam, Herschel Nachlis, Andrew Mercer, Marc Meredith, Jonathan Mummolo, Sean Taylor, Rachel Weisel, and Stefan Wojcik.

REFERENCES

