Multi-Echo fMRI

Chandana Kodiweera, Ph.D.

DBIC
Topics

1. What and Why
2. How: Protocols and Data acquisitions
3. How: Data analysis
Section 1: **What and Why?**
Use already available information in T2* decay profile to enhance fMRI preprocessing and analysis.

Signal has a linear relationship with TE. Noise is independent of the TE.
Compare results	1. Compare the results across the individual echoes.
Noise removal	2. fMRI signal contains bold as well as non-BOLD signals. Non-BOLD - Noise: participant motion and breathing, e.t.c. Because the BOLD signal decays at a set rate, multiple echoes allow us to assess the non-BOLD signal.
Optimal Combination	3. Combining the echoes to take advantage of the signal in the earlier echoes. Signal dropout due to T2* decay can be recovered in high susceptibility-gradients regions.
Optimal Combination

Not a difficult decision!

Vs.

(A) TE=15ms TE=32ms TE=48ms TE Comb.
 3T

(B) TE=8ms TE=23ms TE=37ms TE Comb.
 7T
Costs and benefits of multi-echo fMRI

1. Possible increase in TR - 10% longer TR for three echoes
2. Weighted averaging may lead to an increase in SNR

Software:
The optimal combination of echoes can currently be calculated in several software packages including AFNI, fMRIPrep, and tedana.
Purposely left blank
Section 2: Single Echo vs Multi-Echoes and Acquisition
Single Echo EPI Acquisition

- **RF pulse (Slice Excitation)**
- **TE (x ms)**
- **EPI train**
- **Image (slice 1 acquisition)**
- **Repeat the sequence for next slice**

Parameters:
- SS
- PE
- RO

Sequence:
1. RF pulse (Slice Excitation)
2. TE (x ms)
3. EPI train
4. Image (slice 1 acquisition)
5. Repeat the sequence for next slice
Multi-Echo EPI

RF pulse

SS

Echo 1

TE1

EPI train

Image 1
Slice 1

Echo 2

TE2 (x ms)

EPI train

Image 2
Slice 1

Echo 3

TE3

EPI train

Image 3
Slice 1

More echoes

Repeat for more slices
3 mm isotropic, 200 volumes

- TE1 = 14 ms, TE2 = 34 ms, TE3 = 64 ms
- TE1 = 10.60 ms
- TE1 = 7.54 ms

BIDS format

func_task-rest_acq-cmrr-mbep2d_rec-s2p2pF_3contrasts

Start building your protocol from one of these!

Rename according to BIDS convention. If you don’t, you will have a tough time running fMRIPrep.

S = MB (sms) factor
P = GRAPPA factor
pF = Partial Fourier
CMRR multi-band EPI pulse sequence:

Multi-echo factor
CMRR multi-band EPI pulse sequences:

Step Properties

<table>
<thead>
<tr>
<th>Protocol Parameters</th>
<th>Multi-band accel. factor</th>
<th>Filter</th>
<th>Coil elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routine</td>
<td></td>
<td>None</td>
<td>HEA,HEP</td>
</tr>
<tr>
<td>Contrast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diff</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequence</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Multi-band accel. factor**: 4
- **Filter**: None
- **Coil elements**: HEA,HEP

Routine Pane

- **Slice group**: 1
- **Slices**: 64
- **Dist. factor**: 0%
- **Position**: L.6 P.16.6 H.21.7
- **Orientation**: Transversal
- **Phase enc. dir.**: A >> P
- **AutoAlign**: Head > Basis
- **Phase oversampling**: 0%
- **FoV read**: 240 mm
- **FoV phase**: 100.0%
- **Slice thickness**: 2.00 mm
- **TR**: 2560 ms
- **TE**: 88.00 ms

MB factor is on the Routine pane.
Choosing GRAPPA

GRAPPA is at the usual spot.
No motion correction with multi-echo data!
Section 3: **ANALYSIS**

1. Optimal Combination
2. Deniosing
Optimal Combination
Theoretical relationship

$S(TE) = S_0 \exp(-TE/T_2^*)$

- **BOLD effects modulate T_2^***
 - Activation increases T_2^*
- **Artifactual fluctuations modulate S_0**
 - Artifacts affect base signal, and not much effect on T_2^*
Optimal Combination: fMRIPrep

BIDS layout of the dataset
#!/bin/bash

singularity run --cleanenv
/home/kodiweera/my_images/fmriprep-20.2.3.sif
 --participant_label sub-01
 --bold2t1w-dof 9
 --dummy-scans 3
 --use-aroma
 --dummy-scans 3
 --fs-license-file
 /home/kodiweera/data/freesurfer_license.txt
 /home/kodiweera/data/multi_echo/me_bids
 /home/kodiweera/data/multi_echo/out participant -w
 /home/kodiweera/data/multi_echo/work
A T2* map was estimated from the preprocessed BOLD by fitting to a monoexponential signal decay model with nonlinear regression, using T2*/S0 estimates from a log-linear regression fit as initial values. For each voxel, the maximal number of echoes with reliable signal in that voxel were used to fit the model. The calculated T2* map was then used to optimally combine preprocessed BOLD across echoes following the method described in (Posse et al. 1999).

The optimally combined time series was carried forward as the preprocessed BOLD.
Protocol: s1p2; 200 volumes; 3 mm isotropic

TE1 (TE = 14 ms) TE2 (TE = 34 ms) TE3 (TE = 64 ms)

Enhanced SNR
Denoising
Installation: `pip install tedana`

Running a dataset:

This is my command

```
$ tedana -d sub-01_task-rest_run-1_echo-1_bold.nii sub-01_task-rest_run-1_echo-2_bold.nii sub-01_task-rest_run-1Echo-3_bold.nii -e 14 34 64 --out-dir /home/kodiweera/data/multi-echo/tedana_out
```

```
-d sub-01_task-rest_run-1_echo-1_bold.nii
   sub-01_task-rest_run-1_echo-2_bold.nii
   sub-01_task-rest_run-1_echo-3_bold.nii
-e 14 34 64

--out-dir /home/kodiweera/data/multi-echo/tedana_out
```
Multi-echo data

Total

Image Alignment

ME-PCA

Gaussian (thermal)

Non-Gaussian (structured)

ME-ICA

BOLD (T2*)

Non-BOLD (Non-T2*)

ME - Images

Preprocessing

Slice time and motion corrections

TEDANA

Denoising and Combining

Distortion correction, filtering, smoothing, spatial normalization, rescaling

Rest of processing

Don’t do these steps before TEDANA
Classify the ME-ICA components (199) as signal and noise.

Classify these components as noise.

Classify as signal and combine these components to produce de-noised image.

Classify the ICA components as signal and noise.
Optimally combined fMRIprep TEDANA

Denoised and optimally combined TEDANA
"If a data set is expected to be used for future analyses in later years, it is likely that more powerful approaches to multi-echo denoising will sufficiently mature and add even more value to a data set."

From TEDANA website:
That’s enough of multi-echo fMRI!