Measurements

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean signal (mean)</td>
<td>2722.7</td>
</tr>
<tr>
<td>Signal to Noise Ratio (SNR)</td>
<td>199.9</td>
</tr>
<tr>
<td>Signal to Fluctuation Ratio (SFNR)</td>
<td>199.4</td>
</tr>
<tr>
<td>Percent Fluctuation</td>
<td>0.05</td>
</tr>
<tr>
<td>Drift</td>
<td>0.28</td>
</tr>
<tr>
<td>Radius of Decorrelation (RDC)</td>
<td>10.0</td>
</tr>
<tr>
<td>Mean Ghost Percentage</td>
<td>2.118</td>
</tr>
<tr>
<td>Standard Deviation (std)</td>
<td>1.35</td>
</tr>
</tbody>
</table>

Signal

```
result.xml [percent fluct (trend removed), drift, driftfit] = [0.05, 0.28, 0.1]
```

![Signal plot](image)
Frequence Spectrum

\[
\text{[mean, SNR, SFMR]} = \{2722.7, 199.9, 199.4\}
\]

Raduis of Decorrelation

\[r_{dc} = 10.0 \text{ pixels}\]
Smoothness - X

Smoothness (FWHM) in mm - X: [min mean max] = [2.058 2.129 2.108]

Smoothness - Y

Smoothness (FWHM) in mm - Y: [min mean max] = [2.382 2.437 2.490]
Smoothness - Z

Smoothness (FWHM) in mm - Z: [min mean max] = [1.539 1.857 2.060]

Center of Mass - X

Center of Mass in mm - X: [max displacement drift] = [0.029 -0.023]
Center of Mass - Y

Center of Mass in mm - Y: [maxdisplacement drift] = [0.04 0.055]

Center of Mass - Z

Center of Mass in mm - Z: [maxdisplacement drift] = [0.010 0.002]
Ghost

Mean of ghost voxels as % of non-ghost [masked] mean
(ghostmean, brightghostmean) = (2.118, 4.873)
(lower is better)

Odd-Even Difference Image