Measurements

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean signal (mean)</td>
<td>1589.0</td>
</tr>
<tr>
<td>Signal to Noise Ratio (SNR)</td>
<td>262.4</td>
</tr>
<tr>
<td>Signal to Fluctuation Ratio (SFNR)</td>
<td>257.3</td>
</tr>
<tr>
<td>Percent Fluctuation</td>
<td>0.06</td>
</tr>
<tr>
<td>Drift</td>
<td>0.98</td>
</tr>
<tr>
<td>Radius of Decorrelation (RDC)</td>
<td>6.8</td>
</tr>
<tr>
<td>Mean Ghost Percentage</td>
<td>2.395</td>
</tr>
<tr>
<td>Standard Deviation (std)</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Signal

[result.xml] [percent fluct (trend removed), drift, driftfit] = [0.06, 0.98, 0.]:

![Signal graph](image)
Frequence Spectrum

\[
\text{[mean, SNR, SFNR]} = [1589.0, 262.4, 257.3]
\]

Raduis of Decorrelation

\[
\text{rdc} = 6.0 \text{ pixels}
\]
Smoothness - X

Smoothness (FWHM) in nm - X: [min mean max] = [2.126 2.237 2.300]

Smoothness - Y

Smoothness (FWHM) in nm - Y: [min mean max] = [2.430 2.494 2.602]
Smoothness - Z

Smoothness (FWHM) in mm - Z: [min: mean: max] = [1.677, 2.192, 2.600]

Center of Mass - X

Center of Mass in mm - X: [max displacement drift] = [0.03, -0.013]
Center of Mass - Y

Center of Mass in mm - Y: [maxdisplacement drift] = [0.032 -0.079]

Center of Mass - Z

Center of Mass in mm - Z: [maxdisplacement drift] = [0.024 0.023]
Ghost

Mean of ghost voxels as % of non-ghost [masked] mean
(ghostmean, brightghostmean) = (2.395, 6.891)
(lower is better)

Odd-Even Difference Image
SFNR Image