Measurements

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean signal (mean)</td>
<td>1656.3</td>
</tr>
<tr>
<td>Signal to Noise Ratio (SNR)</td>
<td>285.0</td>
</tr>
<tr>
<td>Signal to Fluctuation Ratio (SFNR)</td>
<td>249.7</td>
</tr>
<tr>
<td>Percent Fluctuation</td>
<td>0.07</td>
</tr>
<tr>
<td>Drift</td>
<td>0.57</td>
</tr>
<tr>
<td>Radius of Decorrelation (RDC)</td>
<td>7.0</td>
</tr>
<tr>
<td>Mean Ghost Percentage</td>
<td>2.131</td>
</tr>
<tr>
<td>Standard Deviation (std)</td>
<td>1.08</td>
</tr>
</tbody>
</table>

Signal

![Signal Graph]

result.xm [percent fluct (trend removed), drift, driftfit] = [0.07, 0.57, 0.]

Frame number

Raw signal (ROI)
Frequence Spectrum

[mean, SNR, SFNR] = [1656.3 205.0 249.7]

Raduis of Decorrelation

rdc = 7.0 pixels

Relative std, %

ROI full width, pixels
Smoothness - Z

Smoothness (FWHM) in mm - Z: [min mean max] = [1.595 2.406 3.331]

Center of Mass - X

Center of Mass in mm - X: [max displacement drift] = [0.031 0.022]
Center of Mass - Y

Center of Mass in mm - Y: [maxdisplacement drift] = [0.035 -0.016]

Center of Mass - Z

Center of Mass in mm - Z: [maxdisplacement drift] = [0.02 0.011]
Ghost

Mean of ghost voxels as % of non-ghost [masked] mean
(ghostmean, brightghostmean) = (2.131, 5.632)
(lower is better)

Odd-Even Difference Image