Measurements

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean signal (mean)</td>
<td>1526.5</td>
</tr>
<tr>
<td>Signal to Noise Ratio (SNR)</td>
<td>261.3</td>
</tr>
<tr>
<td>Signal to Fluctuation Ratio (SFNR)</td>
<td>254.4</td>
</tr>
<tr>
<td>Percent Fluctuation</td>
<td>0.05</td>
</tr>
<tr>
<td>Drift</td>
<td>0.37</td>
</tr>
<tr>
<td>Radius of Decorrelation (RDC)</td>
<td>7.7</td>
</tr>
<tr>
<td>Mean Ghost Percentage</td>
<td>2.149</td>
</tr>
<tr>
<td>Standard Deviation (std)</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Signal

result.xml [percent fluct (trend removed), drift, driftfit] = [0.05, 0.37, 0.1]
Frequency Spectrum

\[\text{[mean, SNR, SFNR] = [1526.5, 261.3, 254.4]} \]

Radius of Decorrelation

\[rdc = 7.7 \text{ pixels} \]
Smoothness - X

Smoothness (FWHM) in mm - X: [min mean max] = [2.085 2.167 2.237]

Smoothness - Y

Smoothness (FWHM) in mm - Y: [min mean max] = [2.386 2.459 2.536]
Smoothness - Z

Smoothness (FWHM) in mm - Z: [min mean max] = [1.516 2.028 2.384]

Center of Mass - X

Center of Mass in mm - X: [max displacement drift] = [0.047 0.042]
Center of Mass - Y

Center of Mass in mm - Y: [max displacement drift] = [0.090 0.087]

Center of Mass - Z

Center of Mass in mm - Z: [max displacement drift] = [0.034 0.027]
Ghost

Mean of ghost voxels as % of non-ghost [masked] mean
(ghostmean, brightghostmean) = (2.149, 5.717)
(lower is better)

Odd-Even Difference Image