Measurements

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean signal (mean)</td>
<td>1569.5</td>
</tr>
<tr>
<td>Signal to Noise Ratio (SNR)</td>
<td>226.4</td>
</tr>
<tr>
<td>Signal to Fluctuation Ratio (SFNR)</td>
<td>228.1</td>
</tr>
<tr>
<td>Percent Fluctuation</td>
<td>0.06</td>
</tr>
<tr>
<td>Drift</td>
<td>0.45</td>
</tr>
<tr>
<td>Radius of Decorrelation (RDC)</td>
<td>7.5</td>
</tr>
<tr>
<td>Mean Ghost Percentage</td>
<td>2.160</td>
</tr>
<tr>
<td>Standard Deviation (std)</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Signal

result.xml [percent fluct (trend removed), drift, driftfit] = [0.06, 0.45, 0.]:

![Signal Graph](chart.png)
Frequence Spectrum

\[\text{[mean, SNR, SFNR]} = [1569.5, 226.4, 228.1] \]

Raduis of Decorrelation

\[\text{rdc = 7.5 pixels} \]
Smoothness - X

Smoothness (FWHM) in mm - X: [min mean max] = [2.079 2.168 2.262]

Smoothness - Y

Smoothness (FWHM) in mm - Y: [min mean max] = [2.392 2.445 2.537]
Smoothness - Z

Smoothness (FWHM) in mm - Z: [min mean max] = [1.529 1.912 2.146]

Center of Mass - X

Center of Mass in mm - X: [max displacement drift] = [0.055 0.055]
Center of Mass - Y

Center of Mass in mm - Y: [maxdisplacement drift] = [0.038 -0.029]

Center of Mass - Z

Center of Mass in mm - Z: [maxdisplacement drift] = [0.014 0.007]
Ghost

Mean of ghost voxels as % of non-ghost [masked] mean
(ghostmean, brightghostmean) = (2.156, 5.458)
(lower is better)

Odd-Even Difference Image