Measurements

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean signal (mean)</td>
<td>2639.0</td>
</tr>
<tr>
<td>Signal to Noise Ratio (SNR)</td>
<td>187.4</td>
</tr>
<tr>
<td>Signal to Fluctuation Ratio (SFNR)</td>
<td>181.1</td>
</tr>
<tr>
<td>Percent Fluctuation</td>
<td>0.10</td>
</tr>
<tr>
<td>Drift</td>
<td>0.50</td>
</tr>
<tr>
<td>Radius of Decorrelation (RDC)</td>
<td>5.7</td>
</tr>
<tr>
<td>Mean Ghost Percentage</td>
<td>2.187</td>
</tr>
<tr>
<td>Standard Deviation (std)</td>
<td>2.75</td>
</tr>
</tbody>
</table>

Signal

[Image: result.xml] [percent fluct (trend removed), drift, driftfit] = [0.10, 0.50, 0.]

[Graph showing raw signal (ROI) over frame number]
Frequency Spectrum

\[\text{[mean, SNR, SFNR]} = \{2639.0, 107.4, 181.1\}\]

Radius of Decorrelation

\[\text{rdc} = 5.7 \text{ pixels}\]
Smoothness - X

Smoothness (FWHM) in mm - X: [min mean max] = [2.085 2.350 2.832]

Smoothness - Y

Smoothness (FWHM) in mm - Y: [min mean max] = [2.395 2.506 3.036]
Smoothness - Z

Smoothness (FWHM) in mm - Z: [min mean max] = [1.684 2.442 3.106]

Center of Mass - X

Center of Mass in mm - X: [max displacement drift] = [0.030 -0.006]
Center of Mass - Y

Center of Mass in mm - Y: [maxdisplacement drift] = [0.077 0.045]

Center of Mass - Z

Center of Mass in mm - Z: [maxdisplacement drift] = [0.036 0.013]
Ghost

Mean of ghost voxels as % of non-ghost [masked] mean
(ghostmean, brightghostmean) = (2.187, 4.829)
(Lower is better)

Odd-Even Difference Image