Measurements

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean signal (mean)</td>
<td>1578.8</td>
</tr>
<tr>
<td>Signal to Noise Ratio (SNR)</td>
<td>267.8</td>
</tr>
<tr>
<td>Signal to Fluctuation Ratio (SFNR)</td>
<td>264.0</td>
</tr>
<tr>
<td>Percent Fluctuation</td>
<td>0.05</td>
</tr>
<tr>
<td>Drift</td>
<td>0.54</td>
</tr>
<tr>
<td>Radius of Decorrelation (RDC)</td>
<td>7.7</td>
</tr>
<tr>
<td>Mean Ghost Percentage</td>
<td>2.181</td>
</tr>
<tr>
<td>Standard Deviation (std)</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Signal

```
result.xml [percent fluct (trend removed), drift, driftfit] = [0.05, 0.54, 0.]
```
Frequence Spectrum

(mean, SNR, SFNR) = [1578.8, 267.8, 264.0]

Raduis of Decorrelation

rdc = 7.7 pixels
Smoothness - X

Smoothness (FWHM) in μm - X: [min mean max] = [2.117 2.227 2.534]

Smoothness - Y

Smoothness (FWHM) in μm - Y: [min mean max] = [2.391 2.491 2.710]
Smoothness - Z

Smoothness(FWHM) in mm - Z: [min mean max] = [1.628 2.152 2.863]

Center of Mass - X

Center of Mass in mm - X: [max displacement drift] = [0.040 0.039]
Center of Mass - Y

Center of Mass in mm - Y: [max displacement drift] = [0.034 0.022]

Center of Mass - Z

Center of Mass in mm - Z: [max displacement drift] = [0.011 0.007]
Ghost

Mean of ghost voxels as % of non-ghost [masked] mean
(ghostmean, brightghostmean) = (2.18, 6.017)
(lower is better)

Odd-Even Difference Image