Physics 3 Homework Due 2Jul03 YSB

(North)

1. \(\gamma \)

\(\text{Border Intercept} \)

\(\vec{x} \) (East)

\(x_B = 100 \) m

\(\vec{u} := |\vec{u}| = 141 \, \text{m/s} \)

\(\vec{v} = u_x \hat{i} + u_y \hat{j} \)

\(= u \frac{\sqrt{2}}{2} \hat{i} + u \frac{\sqrt{2}}{2} \hat{j} \)

Time to cross border is time for \(\chi \) to increase to \(\chi = \chi_B \)

\(\chi_B = \chi = \chi_0 + u_x \, t \quad \chi_0 = 0 \)

\(u_x = 100 \, \text{m/s} \)

\(t = \frac{\chi_B}{u_x} = \frac{100 \, \text{m}}{100 \, \text{m/s}} = 1 \, \text{hr} \)
\[\Delta x = \sqrt{2} \Delta v \]

\[\Delta t = \frac{\Delta x}{\nu} = \frac{\sqrt{2} \times 100 \text{ mi}}{141 \text{ mi/hr}} = \frac{1}{2} \text{ hr} \]
2. \[\vec{v} = v_2 \hat{k} \]
\[v_2 = at \]

The given expression for the velocity v_2 indicates that the velocity increases steadily with time. The unit of a is:

\[[a] = \frac{[v_2]}{[t]} = \frac{m/s}{s} = m/s^2 \]

The velocity increases by a m/s each second.

The position $z(t)$ increases at a constantly increasing rate. By definition:

\[v_2 = \frac{dz(t)}{dt} \]

\[dz(t) = v_2 \, dt \]

\[z(t) = \int v_2(t) \, dt \]

\[z(t) = \int at \, dt \]

\[= a\int t \, dt \]

\[= \frac{at^2}{2} + c \]
To find the constant of integration C, use the fact that at $t=0$, $z=0$

$$z(0) = 0$$

$$z(t) = \frac{a+2}{t} + C$$

set $t=0$\[\rightarrow 0$

$$0 = z(0) = \frac{a+2}{0} + C$$

$$C = 0.$$

Suppose we choose a different origin one where the object is released from a starting position $z(0) = z_0$.

![Diagram of position Z vs. time t]

In this case

$$z_0 = z(0) = C$$

so the general solution is

$$z(t) = z_0 + \frac{1}{2} at^2$$