First assume that \(q_d \) is very far away, and therefore we can ignore its influence on surface charge redistribution of the conductor \(A \).

On the surfaces of cavities containing charge \(-q_b \) \& \(q_c \), there will be induced a uniform surface charge totaling \(-2q_b - q_c\). This happens such that the charges \(q_b \) \& \(q_c \) are shielded inside the electric field from conductor \(A \). Therefore, the presence of the two cavities will not be noticed outside of them.

Since conductor \(A \) is neutral (total \(Q = 0 \)), a uniform surface charge density with total charge of \(q_b + q_c \) is induced in the outer surface of the conductor.

The force on charge \(q_b \) \& \(q_c \) is zero, since a uniform charge density of spherical symmetry yields \(E = 0 \) inside the sphere.

The uniform surface charge density of the outer surface of conductor \(A \) gives rise to an electric field of \(\vec{E} = \frac{q_b + q_c}{4\pi\varepsilon_0 r^2} \) outside the conductor, as if \(q_b \) \& \(q_c \) were at the center of the spherical conductor.
The force on charge Q is therefore

$$ F = \frac{Q}{d} \cdot \frac{B_0 + B_c}{r^2} $$

Due to Newton's third law, the force on conductor A is equal in magnitude and opposite in direction.

3.3

We determine R, so that half of $-Q$, the induced charge on the plane, is contained within the circle of radius R.

$$ \frac{-Q}{2} = \int_0^R 0.2\pi r dr $$

$$ 0 = \frac{-Qh}{2\pi (r^2 + h^2)^{3/2}} $$

$$ = -Qh \left(\frac{r}{(r^2 + h^2)^{3/2}} \right) |_0^R $$

$$ = -Qh \frac{1}{2} \left(-2 \cdot \left(\frac{1}{(r^2 + h^2)^{1/2}} \right) \right) $$

$$ = +Qh \left(\frac{1}{\sqrt{R^2 + h^2}} - \frac{1}{h} \right) $$

or

$$ \frac{1}{r} = \frac{h}{\sqrt{R^2 + h^2}} $$

$$ \therefore R = \sqrt{3} \cdot h $$
3.5 \[W = \frac{Q^2}{2h} \]

- \(Q \) image charge

\[F_e = -\frac{Q^2}{(2h)^2} \text{ force on charge } Q, \text{ when } Q \text{ is } h \text{ above plane. It is perpendicular to plane.} \]

\[W = -\int_{h_0}^{\infty} F_e \, dz = \int_{h_0}^{\infty} \frac{Q^2}{(2h)^2} \, dh = \frac{Q^2}{4} \left(1 - \frac{h_0}{h} \right) \]

\[= \frac{Q^2}{4h_0} \]

The second student has the right answer. The first answer assumes that we do work on both charge \(Q \) and \(-Q \) to pull them apart. However, \(-Q \) is an image charge. Therefore, the total work done to move charge \(Q \) to \(\infty \) is \(\frac{1}{2} \frac{Q^2}{2h} \).

3.7 \(\Phi_A \)

\[\oint \mathbf{E} \cdot d\mathbf{s} = 0 \text{ for a closed loop, or in other words, we should reach the same electric potential.} \]

\[\text{When we go around a loop, } C_6 \text{ we start from pt } A, \text{ held at } \Phi_A, \text{ and go around the square loop CCW, there is a potential drop from B to C,} \]
and a potential drop from C to A. Therefore, after traversing the loop, we don't arrive at the same electric potential. Therefore, such a configuration is physically impossible.

\[C = \frac{2\epsilon \epsilon_0}{\ln\left(\frac{1+\epsilon}{1-\epsilon}\right)} \]

\[\epsilon \approx \frac{b^2}{a^2}, \quad \epsilon \ll 1, \quad \text{and} \quad \ln\left(1+\epsilon\right) \approx \epsilon \]

\[\therefore \quad C \approx \frac{2\epsilon \epsilon_0}{\epsilon - (-\epsilon)} \quad \text{for} \quad b \gg a \]

Let \(C_0 \) be the capacitance of a sphere of unit radius \(a = b = 1 \), and \(C \) the capacitance of a prolate spheroid of equal volume, i.e., \(ab^2 = 1 \) (or \(b = \frac{1}{\sqrt{a}} \))

\[\epsilon = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{1}{a^3}} \quad \frac{C}{C_0} = \frac{\epsilon b^2}{\ln\left(\frac{1+\epsilon}{1-\epsilon}\right)} \]

\[
\begin{array}{cccccc}
\epsilon & 0.19 & 0.4987 & 0.9354 & 0.9985 & \\
C/C_0 & 1.0000 & 1.0018 & 1.1005 & 2.9102 & \\
\end{array}
\]

<table>
<thead>
<tr>
<th>(a)</th>
<th>1.01</th>
<th>1.1</th>
<th>2</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\epsilon)</td>
<td>0.19</td>
<td>0.4987</td>
<td>0.9354</td>
<td>0.9985</td>
</tr>
<tr>
<td>(C/C_0)</td>
<td>1.0000</td>
<td>1.0018</td>
<td>1.1005</td>
<td>2.9102</td>
</tr>
</tbody>
</table>

Capacitance grows as drop is deformed from sphere to a prolate spheroid.

The energy stored in the electric field is given by \(\frac{Q^2}{2C} \). Therefore, energy will decrease.
\[P_1 = (0, 0, 2d) \]

\[\psi_{P_1} = \int_{d}^{0} \frac{\lambda \, dz}{2d - z} \quad u = 2d - z \]

\[= \int_{d}^{0} -\lambda \, du = -\lambda \ln \left(\frac{d}{3d} \right) = \lambda \ln 3 \]

\[P_2 = (x, 0, 0), \quad \psi_{P_2} = \int_{-d}^{d} \frac{\lambda \, dz}{\sqrt{x^2 + z^2}} \]

\[= 2 \int_{0}^{d} \frac{\lambda \, dz}{(x^2 + z^2)^{1/2}} \]

\[= 2 \lambda \ln \left(x + (x^2 + d^2)^{1/2} \right) \bigg|_{0}^{d} \]

\[= 2 \lambda \ln \frac{d + (x^2 + d^2)^{1/2}}{x} \]

\[\psi_{P_1} = \psi_{P_2}, \quad \lambda \ln 3 = 2\lambda \ln \frac{d + (x^2 + d^2)^{1/2}}{x} \]

\[\Rightarrow \sqrt{3} = \frac{d + (x^2 + d^2)^{1/2}}{x} \]

\[\therefore x = \sqrt{3}d \]

The distances from \(P_1 \) to the ends of the rod is \(d + 3d = 4d \).

\[A_1 = (0, 0, d) \]

The sum of the distances from \(P_2 \) to the ends of the rod is \(2d + 2d = 4d \).

\[A_2 = (0, 0, -d) \]
Therefore P_1 & P_2 lie on the ellipse defined by the foci at $(0,0,-d)$ & $(0,0,d)$.

Point $P_3 = \left(-\frac{2d}{2}, 0, d \right)$ lies on the same ellipse.

\[
\left| A_1 P_3 \right| + \left| A_2 P_3 \right| = \sqrt{\left(\frac{3d}{2}\right)^2} + \sqrt{\left(\frac{3d}{2}\right)^2 + (2d)^2}
\]
\[
= \frac{3d}{2} + \frac{5d}{2}
\]
\[
\Rightarrow \left(\frac{3d}{2}, 0, d \right) \quad \text{lies on the same ellipse}
\]

\[
\phi \left(\frac{3d}{2}, 0, d \right) = \int_0^d \frac{\lambda \, du}{\sqrt{\frac{(3d)^2}{4} + u^2}}
\quad \text{with } -u = d - u
\]
\[
= \int_0^d \frac{-\lambda \, du}{2d \sqrt{\frac{(3d)^2}{4} + u^2}}
\]
\[
= \lambda \ln \left(u + \sqrt{\frac{(3d)^2}{4} + u^2} \right) \bigg|_0^{2d}
\]
\[
= \lambda \ln \frac{2d + \frac{5d}{2}}{\frac{3d}{2}}
\]
\[
= \lambda \ln 3 \quad \Rightarrow \text{same potential as } P_1 \text{ & } P_2
\]

Now calculate potential ϕ at a general pt. $(x, 0, z)$.

\[
\phi(x, 0, z) = \int_0^d \frac{\lambda \, du}{d \sqrt{x^2 + (2u - z)^2}}
\quad \text{with } u = 2 - u'
\]
\[
= \int_{2-d}^{2+d} \frac{-\lambda \, du}{\sqrt{x^2 + u^2}}
\]
\(\varphi(x, 0, z) = \lambda \ln \left(\frac{x + \sqrt{x^2 + u^2}}{z - d} \right) \)

\[
\begin{align*}
\varphi(x, 0, z) &= \lambda \ln \left(\frac{x + \sqrt{x^2 + (z+d)^2}}{z - d + \sqrt{x^2 + (z-d)^2}} \right) \\
&= \lambda \ln \left(\frac{a(2+d) + a^2 + 2d}{a(z-d) + (a^2 - 2d)} \right) \\
&= \lambda \ln \left(\frac{(a+d)(z+a)}{(a-d)(z+a)} \right) \\
&= \lambda \ln \left(\frac{a+d}{a-d} \right) : \text{indep. of } x, z \\
\therefore \text{ Ellipse is an equipotential surface.}
\end{align*}
\]

Now for \((x, z)\) on an ellipse,

\[
\frac{x^2}{(a^2 - d^2)} + \frac{z^2}{a^2} = 1, \quad \text{where foci is at } z = \pm d, \quad \text{and major axis is } a.
\]

Then,

\[
x^2 = \left(1 - \frac{z^2}{a^2}\right)(a^2 - d^2) = \frac{(a^2 - z^2)(a^2 - d^2)}{a^2}
\]

\[
x^2 + (z+d)^2 = \frac{(a^2 - z^2)(a^2 - d^2) + a^2(z+d)^2}{a^2}
\]

\[
= \frac{(a^2 + 2d)^2}{a^2}
\]

For \(x^2 + (z-d)^2 = \frac{(a^2 - zd)^2}{a^2}\)

\[
\therefore \varphi(x, 0, z) = \lambda \ln \left(\frac{x + (a^2 + zd)}{z - d + \frac{(a^2 + zd)}{a}} \right) \\
= \lambda \ln \left(\frac{a(z+d) + a^2 + 2d}{a(z-d) + (a^2 - 2d)} \right) \\
= \lambda \ln \left(\frac{(a+d)(z+a)}{(a-d)(z+a)} \right) \\
= \lambda \ln \left(\frac{a+d}{a-d} \right) : \text{indep. of } x, z
\]
3.22 We know from 2.11 that a prolate spheroid is an equipotential surface

with \(\phi = 2 \frac{\ln(a+d)}{a-d} \)

Now \(Q = 2 \cdot 2d \): total charge on rod of length 2d, which is equivalent to the total charge on conductor of prolate spheroid shape.

\[Q = 4d \left(\frac{\ln(a+d)}{a-d} \right) \]

\[C = 2d \left(\frac{\ln(a+d)}{a-d} \right)^{-1} \]

In an ellipse \(b^2 = a^2 - d^2 \), \(b \) minor axis, \(a \) major axis, \(d \) foci

\[d = \sqrt{a^2 - b^2} = a \sqrt{1 - \frac{b^2}{a^2}} = aE, \text{ where } E = \sqrt{1 - \frac{b^2}{a^2}} \]

\[C = \frac{2aE}{\ln\left(\frac{a+ae}{a-ae}\right)} = \frac{2aE}{\ln\left(\frac{1+e}{1-e}\right)} \]

3.24 If a point charge is located between the plates \(y=0, h \) \(j = 5 \), at \(y=b \), the total surface charge on the inner surface of both plates is \(-Q \)
This is due to the fact that \(E = 0 \) inside the 2 conductors, and when we do a surface integral \(\int E \cdot d\sigma = 0 \) for total charge enclosed.

\[\text{Gauss surface } \quad \text{total charge enclosed} = 0 \]

\[\Rightarrow \text{surface charge on both conductors} = -Q. \]

Since the total surface charge induced at \(y=0 \) \(y=a \) by any number of charges is independent of their position on plane, imagine the charge \(Q \) having a uniform surface distribution \(\sigma = \frac{Q}{A} \). The total surface charge induced on inner surfaces of both plates is still \(-Q \). For this uniform charge distribution, we can easily calculate the electric field between the plates.

\[E_1 = \frac{Q_2 - Q_1}{b}, \quad E_2 = \frac{Q_2 - Q_1}{a} \]

Electrical potential at left \(\phi_i \) right plate is the same \(\phi_f \).

\[\sigma_1 + \sigma_2 = -\sigma \text{, where } \sigma_1 \text{ is surface charge density on left plate } \& \sigma_2 \text{ is surface charge density on right plate.} \]
\[
\begin{align*}
\sigma_1 &= \frac{E_1}{4\pi} = \frac{Q_2 - Q_1}{4\pi b} \quad \sigma_2 &= \frac{E_2}{4\pi} = \frac{Q_2 - Q_1}{4\pi(s-b)} \\
\frac{Q_1}{Q_2} &= \frac{\sigma_1}{\sigma_2} = \frac{s-b}{b} \\
Q_1 + Q_2 &= -Q \\
\left(\frac{s-b}{b} + 1\right) Q_2 &= -Q \\
\therefore \quad Q_2 &= -\frac{b Q}{s} \\
Q_1 &= -\left(\frac{s-b}{s}\right) Q
\end{align*}
\]