Physics 15: Introductory Physics I

Problem set 1 due Oct 3 (from K+K):
Read Chap 1 and do problems:
1.12, 1.13, 1.16, 1.17, 1.18, 1.19, 1.20

Hints:

1.12: First solve for the height \(z(t) \) in terms of the unknowns \(z_A \) and \(v_A \) (the \(z \) value of A and the initial \(z \)-velocity at A) and the acceleration \(g \). Then ask: given that \(z = z_A \) when \(t = 0 \) and when \(t = T_A \), what does this tell me? Next, try to figure out the time it takes for the body to go from A to B (that is, go upward a distance \(h \)) in terms of \(T_A \) and \(T_B \) (hint: this is easy!) and then ask: is this all consistent with my expression for \(z(t) \)?

1.13: A time \(T_1 \), the height of the elevator is \(h \). What then is the relation between \(h \), \(T_1 \) and the velocity of the elevator? Then, write an expression for \(z(t) \) that is consistent with what you know.

1.16: Assume that the car accelerates uniformly from rest at \(t = 0 \) until some time \(t = t_0 \), when its velocity reaches some peak value \(v_0 \), and after that always brakes at its maximum rate until some total time \(t = T \) when it is at rest again. How must \(v_0 \), \(t_0 \) and \(T \) be related? Then, use the fact that you know the total distance.

Note: Problem sets due Fridays at 8:45 am (start of class) in P15 box near Wilder main entrance