Brillouin and Raman scattering studies of the isotopically induced ferroelectric phase transition of SrTi18O\textsubscript{3}

T. Yagi, M. Kasahara, Y. Tsujimi, M. Yamaguchia), H. Hasebe, R. Wangb) and M. Itohb)
Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, JAPAN
a) School of Engineering, Hokkaido University, Sapporo 060-0812, JAPAN
b) Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, JAPAN

The quantum paraelectric SrTiO\textsubscript{3} has attracted a lot of interest of many researchers since the quantum-mechanical stabilization of the paraelectric phase below 4K was pointed out as a quantum effect on the polarization fluctuation.1) Recently a ferroelectric phase transition has been reported in the SrTiO\textsubscript{3} crystal exchanged of isotope 18O for 16O.2) The difference of mass between 16O and 18O seems to suppress the quantum fluctuations and to bring divergence of the spatial correlation of the fluctuating polarization at the paraelectric-ferroelectric phase transition. In the present study, the dynamical mechanism of the ferroelectric phase transition of the isotopically exchanged SrTiO\textsubscript{3} has been studied by both of the Brillouin- and Raman scatterings.3-5) The exchange rate of the isotope 18O is 87% which gives the ferroelectric transition temperature T\textsubscript{c}=24K.2)

Brillouin scattering study found anomalous temperature dependence of the acoustic mode near T\textsubscript{c}; a transverse mode shows a softening behavior in contrast to no anomaly of the longitudinal c\textsubscript{33} mode. The rather complicated behavior of the acoustic modes near T\textsubscript{c} has been elucidated. A strong central component appeared in the Brillouin scattering spectra suggests existence of the dynamical cluster near T\textsubscript{c}. The isotope effect on the doublet problem is discussed.

Raman scattering study elucidates a broad spectrum characteristic for the ferroelectric micro-region (FMR) reported previously for SrTi16O\textsubscript{3}.5,6) The size of FMR increases anomalously when temperature approaches to T\textsubscript{c} in the paraelectric phase. The soft mode spectra are not clear below T\textsubscript{c}, though every soft-ferroelectric mode should be Raman active in the ferroelectric phase.

The ferroelectric phase transition induced isotopically in SrTiO\textsubscript{3} seems to be caused by somewhat complicated cluster dynamics rather than by homogeneous fluctuation of polarization.

1) K.A. Muller and H. Burkard: Phys. Rev. B19(1979)3593.
6) H. Uwe, H. Yamaguchi and T. Sakudo: Ferroelectrics \textbf{96}(1989)123.