Spatial patterns of southern pine beetle infestations

Tiina Ylioja¹, Matthew P. Ayres¹ and Daniel H. Slone²

¹ Department of Biological Sciences, Dartmouth College, Hanover, NH 03755; ² Southern Research Station, USDA Forest Service, Pineville, LA 71360

Introduction

- Populations of southern pine beetle, *Dendroctonus frontalis* (Scolytidae) fluctuate from endemic to highly epidemic densities in southeastern United States.
- *D. frontalis* kills healthy pine trees by mass attacking them to overcome their resin defense.
- Infestations of *D. frontalis* (patches of dead and dying pine trees) are non-contiguous within forest landscape.
- Old infestations stop growing during winter and new infestations appear in early summer/late spring.
- Mark-and-recapture study showed that 1/3 of beetles dispersed > 1 km (Turchin and Thoeny 1993).
- During summer, dispersal distances are shorter and beetles respond to host volatiles and aggregate to individual trees and trees adjacent to them leading to infestation growth (Gara 1967, Coster and Gara 1968, Turchin and Thoeny 1993)
- Success of an infestation depends on stand and host tree characteristics and local beetle population density
- If nearby infestations increase the risk of an infestation the following year this may have consequences for forest managers

Hypothesis

The dispersal of *D. frontalis* is limited, and, therefore, the next year’s infestations tend to be close to the infestations of the previous year.

Material and Methods

DATA:

Three nearest neighbors were determined for each infestation within each year (FIG 2).

Randomization test:
Distances between three nearest neighboring infestations between year t and t+1 were calculated (FIG 2). They were averaged to get an observed mean nearest neighbor distance (=test statistic). A randomized distribution to compare the test statistic was compiled by randomly assigning the spatial coordinates of infestations to years t and t+1 and calculating the nearest neighbor distances and their mean 199 times.

Results

For the majority of infestations three nearest infestations were located no further than 2 km (FIG 3).

The three nearest infestations in 1999 were not closer to or further from infestations in 1998 than expected measuring the distances in random (FIG 3, TABLE 1). Infestations in 2000 and 2001 were, however, significantly further from the infestations of the previous years 1999 and 2000, respectively (TABLE 1).

Conclusions

The hypothesis that the dispersal of beetles could limit the spatial spread of infestations was rejected: the pattern was, in fact, the opposite.

Our results support the idea that beetles may switch their behavior after summer, perhaps triggered by environmental conditions. The emerging beetles no longer tend to aggregate to neighboring trees. Instead they may have to fly for a certain distance before they become responsive to host volatiles and pheromones again.

Distances between infestations likely depend on epidemic status of the forest. Therefore, we aim to incorporate data from earlier years and other forests to follow the development of outbreaks in space and time.

Further analyses aim to account for:
- control by cutting infested trees
- host species availability
- earlier years in outbreak history

Acknowledgements: Joe Fauer and Bobby "Bobcat" Lee at Oakmulgee Ranger District, Talladega NF; and Jason Moan.