The relationship between local demographics and landscape epidemiology in the southern pine beetle

Matthew P. Ayres1, Richard Hofstetter1, Sharon Martinson1, and Kier Klepzig2

1 Department of Biological Sciences, Dartmouth College, Hanover, NH 03755; 2 Southern Research Station, USDA Forest Service, Pineville, LA 71360

Introduction

- *Dendroctonus frontalis* (Coleoptera: Scolytidae) is native to the southeastern US where it employs mass attacks to kill healthy native pines.
- Following a spring dispersal phase, beetles form a population of local aggregations (infestations) within the forest landscape.
- Individual infestations then have highly variable rates, from rapid extinction to high growth until dispersal the next spring.
- Thus, the epidemiology of landscape populations involves birth rates and death rates of infestations (annual cycle) as well as local demographics of the beetles that comprise infestations (3–5 generations / year).
- We know relatively little about how local demographics are related to landscape epidemiology.

Hypotheses

H1: The abundance of flying beetles during the spring dispersal phase predicts the number and initial size of infestations during summer.

H2: Infestations that begin with a larger number of dispersing beetles have higher relative growth rates because mass attacks of trees are more successful in large aggregations.

H3: Factors that influence tree oleoresin defenses (e.g., pine species composition, thinning, and climatic variation) can influence the landscape epidemiology of *D. frontalis*.

H1: Supported. However, there is large variation in the size and number of infestations associated with any given abundance of dispersing beetles. Functions in Figs. 3 were used to parameterize a model of landscape epidemiology in which replicate populations of infestations are generated (with stochastic variation) based on the modal abundance of dispersing beetles, and then each infestation was allowed to grow at rates determined by the frequency distributions of tree resin flow across the forest (Figs. 8, 10) and the effects of tree resin on beetle reproduction (Fig. 4).

H2: Apparently falsified. Beetle reproduction is highest when tree resin is lowest (Fig. 4). Tree resin declines fastest when attack rates are high (Fig. 5). There is high variation in attack rates (Fig. 6 upper). However, average attack rates are insensitive to local population size except when \(N \approx 3000 \) (Fig. 6 lower). Thus, the pattern of positive density-dependence in infestation growth rates (Fig. 7) remains unexplained.

H3: Supported in part. Our model indicates that changes in the mean or variance of tree resin flow can influence the growth of beetle populations in a forest landscape. Increases in the average resin flow, or increases in the variance among trees, both tend to increase population growth. However, of the three scenarios evaluated here, tree water status was the only one that generated large affects in population growth. We are unable to explain the common empirical observation that stands of *P. palustris* sustain less infestations than stands of *P. taeda*; none of four studies have indicated higher average resin flow in *P. palustris* and the differences in variance do not seem sufficient to explain the pattern.

Conclusions

- The number and probabilistic fate of beetle infestations in a forest landscape can be conceptualized in terms of initial numbers of beetles during spring dispersal, aggregation of beetles into a population of local infestations, and autonomous dynamics of those infestations through the remainder of the year (with local growth rates being influenced by the mean and variance in tree resin defenses).
- The existence of strong positive density-dependence (Fig. 7) must have a strong impact on landscape epidemiology but a heretofore promising explanation for thisallee effect no longer seems valid (Fig. 6).
- Similarly, we remain unable to explain why *P. palustris* sustains fewer infestations than *P. taeda* (Fig. 12).

Acknowledgments. We thank Ron Billings, Texas Forest Service, and USFS Forest Health Personnel in Pineville, LA for sharing SPB trapping data and SPBIS records.