Formative Assessment Items

1) n is a whole number greater than 0 and less than 5. How many values of $3n$ can there be?

A 0
B 3 (m)
C 4*
D 5

2) m is a positive whole number. How many possible values can $10m$ have?

A 5
B 10 (m)
C 20
D Infinitely many*

3) Simplify $3m + 5 - 2m + 1$.

A 7 (m)
B 10
C $m + 6$ *
D $7m + 8$

4) In the expression $t + 4$, what does t represent?

A 10
B 20
C time (m)
D Any number *

5) At a university, there are six times as many students as professors. This fact is represented by the equation $S = 6P$. In this equation, what does the letter S stand for?

A number of students*
B professors
C students (m)
D none of the above
6) Latoya and Keith dropped a ball from various heights and measured the height of each of the bounces. They recorded their data in the chart below.

<table>
<thead>
<tr>
<th>Height from which ball was dropped ((d))</th>
<th>40 in.</th>
<th>50 in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height of each bounce ((b))</td>
<td>20 in.</td>
<td>25 in.</td>
</tr>
</tbody>
</table>

Which equation best shows the relationship between the height from which the ball was dropped and the height of the ball’s bounce?

A \(hb = hd + 20\) (m)
B \(b = 2d\)
C \(b = d + 30\)
D \(b = \frac{1}{2}d\) *

7) How many different values can the expression \(k + 8\) have if \(k\) can be replaced by any number?

A One (m)
B Infinitely many*
C Eighty
D Zero

8) Trees are cut and new ones are planted. The data are shown below.

<table>
<thead>
<tr>
<th>Number of Trees Planted ((p))</th>
<th>Number of Trees Cut ((c))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

Which equation that will allow you to predict the number of trees planted \((p)\) given the number of trees cut \((c)\)?

A \(c = 2p\)*
B \(c = p + 3\) (m)
C \(c = 4p\)
D \(c = 2p + 100\)
9) Rita put some hummingbird feeders in her backyard. The table shows the number of hummingbirds that Rita saw compared to the number of feeders.

<table>
<thead>
<tr>
<th>Number of Feeders (f)</th>
<th>Number of Hummingbirds (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Which equation best describes the relationship between h, the number of hummingbirds, and f, the number of feeders?

A $h = 11f$
B $h = 2f + 1^*$
C $h = f + 2$ (m)
D $h = f + 6$