Review Topics for Exam #3

Ch. 21
Nomenclature of carboxylic acid derivatives

Nucleophilic acyl substitution
 general mechanism
 vs nucleophilic add’n to carbonyl
relative reactivities
 general types of substitution
specific –olysis reactions

Useful new reactions:
 acid to acid chloride
 acid chloride to aldehyde
 acid chloride to ketone
 ester to aldehyde
 amide to amine
 1° amide to nitrile
 nitrile to 1° amine
 nitrile to aldehyde
 nitrile to ketone

General spectroscopy:
 IR: 1650 – 1850 cm\(^{-1}\)
 nitrile: 2250 cm\(^{-1}\)

Ch. 22
Keto-Enol tautomerism
 Mechanisms, factors affecting stability
 \(\alpha\)-substitution reactions of enols (as differentiated from enolates)
 halogenation
 Hell-Volhard-Zelinskii Reaction

Enolate formation
 Effect of base strength
 \(\alpha\)-substitution vs. carbonyl condensation

Alkylation of enolates

Reactions of stabilized enolates
 Malonic ester synthesis
 Acetoacetic ester synthesis
 Decarboxylation (mechanism, favorable conditions for occurrence)

Ch. 23
Aldol Reaction
 Mechanism, favorable reaction conditions
 Dehydration
 Mixed aldol
 Intramolecular aldol
 Use of aldol reaction to make more complex molecules

Claisen Condensation
 Mechanism, key deprotonation step
 Mixed Claisen
 Dieckmann Cyclization (favorable ring sizes, etc.)

Michael Reaction
 Mechanism
 What anions are favorable Michael donors?

Stork Enamine reaction
 Mechanism
 Use in Michael-type additions
 Alkylation of aldehydes

Robinson Annulation
 Mechanism (Michael + aldol)
 Recognition of Robinson product
 Use with conjugate addition