“Physics 1” in 1300: Natural Philosophy and the Medieval University

Merton College, Oxford
Last time ...

- **Kepler’s physical astronomy**
 - First fundamental critique of Aristotle, in the shift from two physics to one physics
 - Crystalline spheres replaced by magnetism to keep planets in their orbits
 - Invisible force acting at a distance!
 - Circles in heavens replaced by ellipses
 - Three empirical laws of planetary motion
 - Elliptical orbits with Sun at one focus
 - Equal areas swept out in equal times
 - Harmonic law: $P^2 = a^3$
 - Quantitative prediction improved (but not new!)

- **The concepts**
 - Retrograde motion, hippopede, epicycle, deferent, equant, saving the phenomena, stellar parallax, crystalline spheres
Value of medieval physics?

- **Obstacle to modern science?**
 - Suggested by Prof. Gleiser last time
 - Claimed by creators of the “new” sciences of the Scientific Revolution (“ancients” vs. “moderns”)

- **Roots of modern science?**
 - Pierre Duhem thesis, 1913

- **Recent views**
 - Coherent philosophy to be understood on its own terms, but provided texts and questions for what would become “modern science”
Task of lecture

- Emergence of European medieval universities in twelfth century
- Legacy of Aristotelian philosophy in the universities
- Relation of medieval natural philosophy to new sciences of seventeenth century
Why new universities in 12c?

- Predecessors
 - Seven liberal arts codified by 200 in Latin encyclopedias
 - Trivium = grammar, rhetoric, logic
 - Quadrivium = arithmetic, geometry, music, astronomy (where is physics?)
 - Cathedral Schools mandated by Charlemagne, c. 800

- European conditions around 1200
 - Political stability, economic prosperity
 - Influx of Greek knowledge via translations into Latin from Arabic and Greek (Spain the center)
 - Cistercian Order founded 1098 in Burgundy
 - New secular values, based on manual labor, rejection of feudal revenues, economic self-support of each abbey
 - Rapid growth--338 abbeys by 1150, from Sweden to Greece
 - Supported urban life and commerce
 - Introduced technological innovations in farming
The university movement

- **Guild model** = self-governing group who set curricula & teachers
 - Monopoly on Latin learning, excluded women
 - Paris/Oxford model
 - Association of masters, under Bishop of Paris (theology supreme)
 - Bologna model
 - Association of law students who elected faculty (law and medicine supreme)

- More than 70 universities founded by 1500
 - Ca. 750,000 students from 1350-1500 (<< 1% population), i.e., demographically insignificant
 - Average university had about 400 students, largest in Paris might have 1000 students enrolled
Life at the medieval university

- Four faculties: arts, medicine, law, theology
- Bachelors (4 yrs), masters (6 yrs), doctors (docere) in knightly ceremonies; most students left after 2 years without earning a degree
- Standardized curriculum
 - 7 liberal arts + Aristotle for arts faculty
 - Scientia=organized human knowledge
 - Specialized texts for “higher” faculties
- Classroom pedagogy (no research!)
 - Lectures, questions, disputations
 - Ideology of “liberal arts” as not practical
 - Goal was to train bureaucrats for the emerging states, but practical matters were learned in apprenticeships outside university
Aristotle and Scholasticism

- Questions as the basis of scholasticism
 - “Let us inquire whether ...”
 - Stresses logic-rhetoric, not experimentation which “violates” nature’s “inner principles”
 - Understanding “inner principles” is goal of natural phil.

- Aristotle and Christian theology
 - Thomas Aquinas (d. 1274) and synthesis
 - “Condemnation of 1277” in Paris; 219 propositions condemned by Bishop of Paris
 - Eternity of the world?
 - Doctrine of double truth?
 - Limits on God’s absolute power?
 - “God could not create an accident (hot) without a subject (rock).”
 - Condemnations generally annulled by 1325
Dynamics (causes) of motion

- Aristotle: **external** mover required for every moving body, in direct contact
 - Nature abhors a vacuum
- Philoponus (6c Alexandria): impressed force as mover, **internal** to the moving body
- Jean Buridan (14c Paris): “impetus theory”
 - Empirical examples to refute Aristotle on motion
 - Impressed “force” but acts like Aristotelian cause
- William Ockham (14c Oxford): fewer are better
 - Coexistence of object over different parts of space is not an “effect,” requires no cause for explanation
 - Razor shaves away unneeded words
Problems with Aristotle’s “force law”
- Velocity proportional to Force/Resistance
 - If $R = 0$, V becomes infinite (but logically impossible)
 - If F decreases, V never reaches 0 (but empirically wrong)

Th. Bradwardine’s (14c Oxford) alternate laws
- Explored expressions such as:
 - V proportional to $F - R$ (rejected)
 - V proportional to $(F - R)/R$ (rejected)
 - V increases arithmetically as (F/R) increases geometrically, i.e., to triple V, must cube (F/R)
 - Keeps $F > R$ but avoids discontinuities
 - Sought mathematical and logical coherence, not experimental confirmation (like Galilieo!)
Kinematics (i.e., mathematical description) of motion

“Latitude of forms”, Merton College
- “Form” = any quality that varies continuously on a single axis (e.g., hot/cold), Aristotelian idea
- Graphical representation of temperature of an iron bar of given length, with right end in fire
Latitudes of velocity vs. time

- Uniform velocity
- Uniformly non-uniform velocity (= uniform acceleration)
- Nonuniformly nonuniform velocity
- Breakthrough (origins not known)
 - Area of figure = Distance traveled!
- Merton College Rule (= mean speed rule)
 - Distance covered in time (t) at uniform acceleration is same as that traveled at mean speed
Proof of Merton College Rule

- Logic not experiment!
- Not applied to free fall!

D = 1/2 V_f T [area of triangle] = V_m T [area of rectangle]

Recall that a = (V_f - V_i) / T, by def; this means D = 1/2 aT^2!
The Mertonians did NOT notice this; but Galileo did!
Medieval natural philosophy and the Scientific Revolution?

- Preconditions for a new science?
 - Translations of Greek texts
 - Universities as sites for debate on natural philosophy
 - Détente with Christian theology

- Substantive contributions?
 - Studies of motion (context for Galileo?)
 - Discussions of matter and vacua (mechanical philosophy?)
 - Some experimental studies (but rare!)
 - Theodoric of Freiburg (1300) on rainbow
 - Experimentally traced path of light through spherical flasks filled with water