GOVT 83.21:
Experiments in Politics

Instructor: Prof. Brendan Nyhan
Office: Silsby 305
Email: nyhan@dartmouth.edu
Phone: 603/646-2894

Classroom: Silsby 215
Schedule: TTH 2–3:50 PM
x-period: Wed. 4:15 PM–5:05 PM
Office hours: Wed. 9–11 AM

Course overview

This class is a lab-style seminar in which we will design, field, and analyze an experimental study of political misperceptions. Our ultimate goal is to publish a scholarly article in a peer-reviewed journal of political science—an ambitious project that will require a substantial commitment from each student. Flexibility will also be essential since the course will evolve during the quarter based on the needs of the project. In particular, I ask that you keep the x-period open so we can use it for ad hoc meetings. I have scheduled meetings for the x-period on March 30, April 13, April 20, April 27, and May 4 but we may need to meet at that time during other weeks.

Prerequisites

The course has no prerequisites, but GOVT 10 or an equivalent course is strongly recommended. We will frequently use Stata and analyze data using statistics.

Plan for the course

We will begin by discussing the goals of science and the value of experiments. We will then learn about experimental design, statistics, and the use of statistical software. To make these concepts more real, students will design, administer, and analyze their own mini-experiments in small groups.

In the second phase of the course, we will determine the focus of our research. With my guidance, students will survey recent articles in political science and psychology, identify a promising theory or unresolved question related to misperceptions, and write a short paper proposing an experiment that we could carry out. After these proposals have been presented, the class will decide which question to pursue. (We may conduct pre-tests of more than one possible experiment if possible given time and budget constraints.)

We will then break into groups to design different portions of the experiment, which will be revised and combined. After finalizing the design and obtaining human subjects approval to conduct the study, we will collect experimental data from online participants on Amazon’s Mechanical Turk or an equivalent service.

During the last part of the class, we will work together to analyze the data and report our findings. Each student will write a short paper adhering to the formatting and word limits of a “Flash Report” in the Journal of Experimental Social Psychology (2500 words). I will combine those drafts into a class
manuscript that we will revise collaboratively. The class will culminate with each student developing a critique of the paper’s writing, argument, and quantitative analysis and proposing revisions and/or additional experiments designed to improve it. These changes will hopefully be integrated into a manuscript that will be submitted to a scholarly journal after the completion of the course. (The outcome will depend on the results of our initial experiment.) Participation in revisions after the class ends is totally optional.

Learning objectives
By the end of the course, you will be able to:

- Explain the value of experiments to science
- Critique previous experimental research in political science and psychology
- Design and conduct an original experiment
- Perform a statistical analysis of experimental data
- Write and critique a scholarly article reporting the results of an experiment

Because these tasks may be unfamiliar, submissions from past classes are provided as a reference for each major assignment on Canvas.

Course materials
The following book is required and can be purchased or rented online:

A few chapters from other books will be made available as scanned PDFs on Canvas under Course Materials and are labeled as such below. All other assigned readings can be accessed by clicking on the hyperlink in the article title below. (Note: You will need to be on the campus network or logged into the VPN to access those that are behind academic journal paywalls.)

Communication
The class will run through Canvas. I will use it to email announcements to you and to provide PDFs of assigned readings that are not available online. Please submit your work to me through its assignments function rather than by email. However, if you have questions, please come to my office hours or email me.
Laptop/electronic device policy

Laptops, cell phones, and other electronic devices may only be used during class with my permission during working sessions, group work, etc. You should therefore make sure to print all readings before class. This policy is motivated by the growing body of research which finds that the use of laptops hinders learning not just for people who use them but students around them as well. Multitasking is distracting and cognitively taxing. In addition, research suggests that students take notes more effectively in longhand than on laptops.

Academic integrity

Students are responsible for understanding the academic integrity rules at Dartmouth. Explanations of integrity rules and principles can be found at http://www.dartmouth.edu/~uja/. Ignorance of the Academic Honor Principle will not be considered an excuse if a violation occurs. Beyond any penalties imposed as a consequence of an Academic Honor Principle investigation, any student who is found to have cheated or plagiarized on any assignment will receive a failing grade in the class. Details on citing sources appropriately are available at http://writing-speech.dartmouth.edu/learning/materials/sources-and-citations-dartmouth. Please see me immediately if you have any questions or concerns.

Students with disabilities

Students with disabilities enrolled in this course who may need disability-related classroom accommodations are encouraged to make an appointment to see me before the end of the second week of the term. All discussions will remain confidential, although the Student Accessibility Services office may be consulted to discuss appropriate implementation of any accommodation requested.

Religious observances

Some students may wish to take part in religious observances that occur during this academic term. If you have a religious observance that conflicts with your participation in the course, please meet with me before the end of the second week of the term to discuss appropriate accommodations.

Statistical software/consulting

We will use Stata statistical software in this course, which is freely available to students. Please install Stata 13 and the Key Access app on your computer and verify that you can run it successfully as soon as possible.

Installing Stata 13 for Mac (make sure you install KeyAccess first!): http://tech.dartmouth.edu/its/services-support/help-yourself/knowledge-base/
Installing Stata 13 for Windows (make sure you install KeyAccess first!):

http://tech.dartmouth.edu/its/services-support/help-yourself/knowledge-base/

Please note that some people have had trouble installing Stata in the past, so please make sure to do it as soon as you can so you can get help before the first Stata workshop if you run into problems. Also, you must be connected to the Dartmouth network via Ethernet, wireless, or the VPN to install and use Stata and KeyAccess. If you are off campus, you will first need to sign on to the VPN at http://gateway.dartmouth.edu.

If you have trouble getting Stata installed, please visit the IT Walk-in Center at 178J Berry Library or contact Jianjun Hua, who is a statistical consultant providing Stata support for students in this course. His office is Room 445 at 37 Dewey Field Road (near Dick’s House) and he can provide assistance to you with Stata during his office hours in 010 Silsby or by appointment. He can be reached at statistical.consulting@dartmouth.edu or 603/646-6552. You should have Stata installed on your computer and ready to use. Please bring your computer to class.

To learn how to correctly set your working directory and open data in Stata, please consult the guide provided at the end of this syllabus. If you have additional problems, please consult the following resources in this order:

1. Stata help — Simply type “help <command>” for any Stata command in the command window and the help file for that command will appear. For more help, click on the linked title of the help file (e.g., “[R] summarize”) to open a PDF of the relevant section of the Stata manual. The manual provides more extensive discussion and examples in the “Remarks” section, which appears below the text from the online help file.

3. Consult the sample .do file that I have provided on Canvas, which demonstrates a variety of useful commands with correct syntax, including how to tabulate, summarize, and graph data and perform various statistical tests and analyses.

4. Google for answers — extensive resources are now available online. Someone has probably asked the same question in the past. UCLA’s Stata resources site (http://www.ats.ucla.edu/stat/stata/) is especially helpful. See also the Stata YouTube channel for demonstration videos.

5. Consult Mr. Hua by email at statistical.consulting@dartmouth.edu or make an appointment to meet with him.
6. Contact me by email at nyhan@dartmouth.edu or make an appointment to meet with me. When you do, please send a precise description of your problem along with your data, .do file, and a screenshot or Stata output, which help me more quickly diagnose the problem.

(Students who want a more detailed guide to Stata usage might wish to consult A Stata Companion to Political Analysis, Third Edition by Philip H. Pollock III or A Gentle Introduction to Stata, Fourth Edition by Alan C. Acock.)

Office hours

My office hours for the spring term are Wednesday from 9:00–11:00 AM. To ensure you have a time that works for you, please schedule a meeting with me using my ScheduleOnce page at http://meetme.so/BrendanNyhan. I will prioritize appointments over walk-ins though I am of course happy to meet with any student if time permits. (If you cannot make it to office hours, please email me to schedule an alternate meeting time.)

Assignments and grading

Grading in this class will be based on the components described below. All work is due at the time specified in the syllabus and on Canvas unless otherwise noted. Late work will not be accepted without prior permission.

Class participation—20%

By necessity, our collaboration will largely take place in the classroom. As such, it is essential that each student make thoughtful and consistent contributions in class discussion and group work. At a minimum, however, you should attend class on time with your readings and assignments completed and be respectful of others during class discussion.

Please also note that we will often write or edit documents, analyze data, etc. during the seminar. It is thus essential for you to bring your laptop to class so that you can participate in these activities.

One-page assignments and out-of-class participation—10%

It is also important that each student make contributions to our collective effort outside of class time. During the quarter, students will be regularly asked to contribute to the design of our experiment via email, on Google Docs, etc. and to complete a series of one-page assignments asking them to propose experiments, critique proposed experiments, and suggest revisions that could improve them. In each case, the goal is to help teach you how to think analytically about answering social scientific questions using experiments. Your contributions will be evaluated based on creativity, insight, and attention to detail.
Proposed experiment (due 4/12 8 PM; draft due 4/10 8 PM)—15%
Each of you will work with me to select a research topic from the list at the end of the syllabus or to choose a related topic (which I must approve). You will then write a 1000–1500 word paper summarizing recent research in that area and proposing a realistic experiment related to misperceptions which would make an important contribution to that literature. (Note: Before starting the assignment, read the required overview articles on correcting misperceptions listed at the end of the syllabus as well as Ch. 2 and Appendix B in Dunn.)

Here are the three primary goals of this assignment, which correspond roughly to the structure I envision (though the organization of the paper is up to you):

1. Give a short but precise summary of the most important (i.e. new/prestigious or influential/highly cited) articles in your field so that your fellow students can discuss your area intelligently. You can’t possibly cover all of the research, so you should make sure to focus on the key aspects of the most important and novel studies (research questions, methodologies, findings, etc.). The idea is to give us an overview of the most relevant work (i.e., the foundational research and the most recent/relevant studies) and to build from there.

2. Make an argument for where the literature described in #1 has fallen short or where unanswered questions remain. This can be a separate section or woven into your literature review.

3. Propose an experiment that builds on the state of the art described in #2. Your description of the experiment needs to provide enough detail so that we can have an intelligent discussion about it. At a minimum, it should include the research question/hypothesis, the experimental design (e.g., 2x2 between-subjects), the proposed experimental treatments, the dependent variable(s), any non-experimental variables should be measured because they might change the effect of the treatment, and any steps that should be taken to minimize extraneous/confounding variables.

Since this will be a new type of assignment for most of you, I will review draft papers and provide feedback if you submit a draft by the early deadline above (this is optional). I will also make sample proposals from previous students available on Canvas.

Flash report (due 5/20 at 5 PM; drafts due 5/15 at 5 PM)—30%
Each student will write a short paper reporting the results of the experiment that adheres to the formatting and word limits of a “Flash Report” in the Journal of Experimental Social Psychology (2500 words – see notes on content under “Article structure” in JESP’s guide for authors). You will have a chance to get feedback from your classmates on a draft of your article before it is due. Examples of paper sections written by previous students will be available on
Canvas. The rubric that I will use to evaluate your work is provided at the end of the syllabus.

Proposed revisions/critiques of article—25%

I will combine the drafts into a single class manuscript. Each student will then develop a 500–750 word paper critiquing a specific aspect of its writing, argument, and/or quantitative analysis and proposing revisions or future experiments to address the problems they have identified (5%, due 5/27 at 5 PM). You will get feedback from your classmates on a draft (due 5/25 at 12 PM) before submitting a final version. The goal is to give you experience with the critique and revision process.

Students will then write a 1500–2500 word critique of the article as a whole for their final paper. It should propose further revisions and suggest future research projects that build on our results (20%, due 6/4 at 5 PM). As in the cases above, I will provide sample papers from previous students on Canvas for you to review. Please submit a short summary or proposal for your long critique before our final class (due 5/29 at 5 PM).

The rubric that I will use to evaluate your critiques is provided at the end of the syllabus.

Course schedule

Experiments: Why and how

Why experiments? Plan for the class (3/29)

- Why experiments? (real world)

- Why experiments? (academic)
Why misperceptions? (my expertise)

Our plan of attack: Replicate and extend

Experimental design fundamentals (3/30–x-period)

– Dunn, Chapter 4 (Canvas)

No class (3/31)

– Assignment: Earn $5 as a worker taking academic studies on Amazon Mechanical Turk and write a one-page reflection paper on what you learned about surveys, identifying both practices that should be emulated and those that should be avoided (due 4/1 5 PM; include screenshot showing payments)

– Assignment: Read about potential research topics and submit topic rankings (due 4/3 5 PM)

Experiments: Applied design workshop (4/5)

– Measurement: Dunn, Chapters 6–9

– Design and analysis critique

 – Assignment: 3–5 questions about the experimental designs in the sample articles, the inferences the authors draw, or the statistical analyses they conducted (due 4/5 12 PM). Read them closely! We will work through them in detail during class.

– Small group: Design your own mini-experiment

Student session (4/7)
• Complete experimental design — your final design (due 4/8 by 5 PM) should include the following:

 – Conceptual, research, and statistical hypotheses
 – Independent variable (i.e., treatment/control), dependent variable (outcome variable or variables), and brief rationale for how they are operationalized
 – Summary of the experimental design (i.e., 2x2 between-subjects)
 – Non-experimental demographic variables you think are necessary to measure so you can describe the composition of your sample
 – Non-experimental variables that you plan to measure because they might change the effect of your treatment
 – Steps taken to minimize extraneous/confounding variables
 – Include your draft instrument from Qualtrics (Advanced options→Export survey to Word or copy/paste from the Print Survey screen; make sure to precisely identify what content is being randomized and which group sees what)1

• Collect mini-experiment data (must be ready for analysis in class on 4/12)

Statistical evaluation of experiments (4/12)

• Evans and Rooney, pp. 269–288 (Canvas)

• Optional statistics resources:

 – Relevant GOVT 10 lecture slides (Canvas)
 – *The OpenIntro Statistics* textbook (free!)
 – Hints on how to read and interpret regression tables (handout on Canvas)
 – The *Statistical Reasoning* online tutorial provided by the Open Learning Initiative at Carnegie Mellon

• Optional Stata resources:

 – *Getting Started With Stata*, Ch. 3 (Canvas)
 – Khan Academy probability and statistics videos

1See the notes on how to use Qualtrics and analyze data from it at the end of the syllabus.
Stata YouTube demonstration videos
Sample Stata .do file with example syntax and explanatory comments (Canvas)

• Discussion: How could measurement and manipulations of mini-experiment have been improved?

• Small groups: Mini-experiment data analysis workshop (create commented mini-experiment do-file, data, and cleanly formatted results summary and submit by end of class)

Choosing a topic

Research topics (4/13- x-period)

• Assignment: Submit your experimental proposal (due 4/12 8 PM)

• Read other students’ experimental proposals (list TBD; Canvas)

• Assignment: Drawing on the criteria listed below, propose at least one modification to/critique of each experiment we will discuss other than your own (up to 2 pages; can be in list/bullet format — due 4/13 at 3 PM)

• Small groups: Discuss ideas for experimental modifications

Research topics II (4/14)

• Read other students’ experimental proposals (list TBD; Canvas)

• Assignment: Propose at least one modification to/critique of each experiment we will discuss other than your own (up to 2 pages; can be in list/bullet format — due 4/14 at 12 PM)

• Discussion: Consider all the possible approaches. Which is the best topic other than your own according to the following criteria?

 – Normative importance (does it deal with an important question for democracy?)

 – Theoretical contribution (new hypothesis/prediction—the more original or surprising, the better)

 – Methodological contribution (new technique used)

 – Empirical contribution (surprising or counter-intuitive result, contradicts previous findings, etc.)

 – Practical considerations (can we do it?)

• Goal: Choose research topic and basic research design
Pre-test design and analysis

Study design I (4/19)

- Read relevant articles on topic:
 - TBD

- Resources on previous poll questions and misperceptions (optional; for background/reference)
 - Misinformation and Fact-checking: Research Findings from Social Science
 - Misinformation and the 2010 Election: A Study of the US Electorate
 - American National Election Studies Time Series Cumulative Data File (variable list)
 - Previous academic studies in Google Scholar
 - Roper Center for Public Opinion Research: iPoll
 - PollingReport.com

- Assignment: Propose design of an experiment and outline of independent and dependent variables in instrument (can be in list/bullet format but make it as detailed as possible; due 4/19 12 PM)

- Goal: Create preliminary experimental design(s)

Student session (4/20 • x-period)

- Assignment: Complete experimental instrument draft(s) in Google Docs

Study design III (4/21)

- Assignment: Read Dunn Chapter 3 and complete CPHS human subjects training

- Goal: Finalize experiment and implement in Qualtrics (during class; see notes at end of syllabus)

- Goal: Complete and submit exemption application (during class)

Pre-test results (4/26)

- Assignment: What hypotheses should we test and descriptive statistics/plots should we generate with the pre-test data? (one page in list or bullet form; due 4/26 12 PM)

- Small group assignment: Commented do-file that makes dependent and independent variables and tests hypotheses plus one-page summary of results (due at end of class)
Goal: Review/understand pre-test results

Experimental revisions (4/27–x-period)

- Individual assignment: Proposed revisions to experiment (1 page; due 4/27 3 PM)
- Discuss experimental revisions based on pre-test results

Writing the article

Study preregistration (5/3)

- Assignment: Draft preregistration following EGAP format (see http://egap.org/node/add/registration) and submit a Word doc or PDF on Canvas (due 5/3 12 PM; submit on Canvas, not to EGAP)
- Goal: Identify hypotheses and define analysis plan as a group

Components and structure of an article (5/4–x-period)

- Dunn Ch. 12, Appendix C
- Assignment: One-page reaction paper to Nyhan, Reifler, and Ubel — may include comparison/contrast to recommendations in Dunn or King, suggestions for improvements, questions to discuss in class, or reflections on the differences from other types of academic writing (due 5/3 12 PM)

Best practices in scientific writing (5/5)

• Assignment (2–3 pages): Compare/contrast the two articles above, identifying best practices in academic writing as well as problems to be avoided (due 5/5 12 PM)

• Small groups: Compare articles to draft preregistration, identify omissions and flaws to correct before finalizing

Results analysis
Initial analysis of results (5/10)
• Small group work in Stata with study data
• Small group assignment: Commented do-file of descriptive statistics, statistical results, and graphs

Further analysis of results (5/12)
• Small group work in Stata with study data
• Small group assignment: Commented do-file of descriptive statistics, statistical results, and graphs (due end of class)

Peer feedback on article drafts (5/17)
• Assignment: Article draft (due 5/15 5 PM)
• Assignment: For each section of your partner’s draft, list at least two specific aspects of the manuscript that meet the objectives under “Article structure” in JESP’s guide for authors and/or those described in the flash report rubric at the end of the syllabus and at least two that need further development. With those criteria in mind, write at least three specific and constructive questions for the author that could help them think about how best to revise the paper (due 5/17 12 PM).

• Class discussion of paper progress
• Review and discussion of peer review responses

Revisions (5/19)
• Working session
• Assignment: Article final (due 5/20 5 PM)

Revising the article
Article discussion (5/24)
• Carefully read draft manuscript
• Small groups: Clean up errors and omissions
• Assignment: Ideas for short and long critiques (1 page; due 5/24 12 PM)

Short critiques (5/26)
• Assignment: Short critique draft (due 5/25 5 PM)
• Read other students’ draft short critiques
• Assignment: Draft short critique responses (1 paragraph each; due 5/22 12 PM)
• Small groups: Feedback on critiques
• Assignment: Short critique final (due 5/27 5 PM)

Long critiques (5/31)
• Assignment: Long critique proposals (due 5/29 5 PM)
• Read other students’ long critique proposals
• Assignment: Responses to other students’ long critique proposals (1 paragraph each; due 5/31 12 PM)
• Small groups: Feedback on proposals
• Assignment: Long critique final (due 6/4 5 PM)
Paper topics

Please first consult the syllabus for my political misinformation and conspiracy theories course at http://www.dartmouth.edu/~nyhan/misinformation-syllabus.pdf. You may select any of the topics in that syllabus. An alternate list of possible topics and relevant articles is also provided below (note: please talk to me if you would like to design a custom topic instead). Each of these readings can be accessed by clicking on the hyperlink in the article title. Make sure to read Ch. 2 and Appendix B of Dunn before starting your paper.

Overview: The difficulty of correcting misperceptions (everyone)

When Corrections Fail: The Persistence of Political Misperceptions
Misinformation and Fact-checking: Research Findings from Social Science
Misinformation and Its Correction: Continued Influence and Successful Debiasing
The Politically Motivated Reasoning Paradigm

Political science research on misinformation and corrections

Misinformation and the Currency of Democratic Citizenship
Same Facts, Different Interpretations: Partisan Motivation and Opinion on Iraq
Rumors and Health Care Reform: Experiments in Political Misinformation
The Hazards of Correcting Myths About Health Care Reform
Which Corrections Work? Research results and practice recommendations
You Cannot be Serious: The Impact of Accuracy Incentives on Partisan Bias in Reports of Economic Perceptions
Partisan Bias in Factual Beliefs about Politics
Motivated Learning or Motivated Responding? Using Incentives to Distinguish Between the Two Processes

Motivated reasoning about science, health, and data

Featuring Skeptics in News Media Stories About Global Warming Reduces Public Beliefs in the Seriousness of Global Warming.
Psychological resistance to unwelcome information
Solution aversion: On the relation between ideology and motivated disbelief
The psychological advantage of unfalsifiability: The appeal of untestable religious and political ideologies

Rumors: Communications and psychology research
Rumor denials as persuasive messages: Effects of personal relevance, source, and message characteristics
Source characteristics in denying rumors of organizational closure: Honesty is the best policy
Rumor Has It: The Moderating Effect of Identification on Rumor Impact and the Effectiveness of Rumor Refutation
Tweet, but Verify: Epistemic Study of Information Verification on Twitter
Electoral Consequences of Political Rumors: Motivated Reasoning, Candidate Rumors, and Vote Choice during the 2008 U.S. Presidential Election
Troubling Consequences of Online Political Rumoring

Memory and misinformation
Correcting false information in memory: Manipulating the strength of misinformation encoding and its retraction
Terrorists brought down the plane! No, actually it was a technical fault:
Processing corrections of emotive information
Evolving Informational Credentials: The (Mis)Attribution of Believable Facts to Credible Sources
Memory for Fact, Fiction, and Misinformation
Nonprobative photographs (or words) inflate truthiness
False memories of fabricated political events

Mortality salience
Deliver us from Evil: The Effects of Mortality Salience and Reminders of 9/11 on Support for President George W. Bush
Two Decades of Terror Management Theory: A Meta-Analysis of Mortality Salience Research

Self-affirmation and ego depletion
When Beliefs Yield to Evidence: Reducing Biased Evaluation by Affirming the Self
Bridging the Partisan Divide: Self-Affirmation Reduces Ideological Closed-Mindedness and Inflexibility in Negotiation
Opening the Political Mind? The effects of self-affirmation and graphical information on factual misperceptions
Attenuating Initial Beliefs: Increasing the Acceptance of Anthropogenic Climate Change Information by Reflecting on Values
Pro-environmental actions, climate change, and defensiveness: Do self-affirmations make a difference to people’s motives and beliefs about making a difference?
Acknowledging the Skeletons in Our Closet: The Effect of Group Affirmation on Collective Guilt, Collective Shame, and Reparatory Attitudes
Self-affirmation and self-control: affirming core values counteracts ego depletion
The role of cognitive resources in determining our moral intuitions: Are we all liberals at heart?
The Psychology of Change: Self-Affirmation and Social Psychological Intervention
Self-Affirmation: Understanding the Effects

Information selection and processing
Hot Cognition or Cool Consideration? Testing the Effects of Motivated Reasoning on Political Decision Making
Motivated Skepticism in the Evaluation of Political Beliefs
Self-regulation and selective exposure: The impact of depleted self-regulation resources on confirmatory information processing

“Cultural cognition”
The Tragedy of the Risk-Perception Commons: Culture Conflict, Rationality Conflict, and Climate Change
Cultural Cognition of Scientific Consensus

Conspiracy theories
Lacking control increases illusory pattern perception
An Existential Function of Enemyship: Evidence That People Attribute Influence to Personal and Political Enemies to Compensate for Threats to Control
Conspiracy Endorsement as Motivated Reasoning: The Moderating Roles of Political Knowledge and Trust
What Drives Conspiratorial Beliefs? The Role of Informational Cues and Predispositions
Is Belief in Conspiracy Theories Pathological? A Survey Experiment on the Cognitive Roots of Extreme Suspicion
A Dual-Motive Model of Scapegoating: Displacing Blame to Reduce Guilt or Increase Control
The Kennedy Assassination, Unidentified Flying Objects, and Other Conspiracies: Psychological and Organizational Factors in the Perception of “Cover-up”
Conspiracy Theories are for Losers
Conspiracy Theories, Magical Thinking, and the Paranoid Style(s) of Mass Opinion
Do I think BLS data are BS? The Consequences of Conspiracy Theories
A major event has a major cause: Evidence for the role of heuristics in reasoning about conspiracy theories (Canvas)
Measuring belief in conspiracy theories: the generic conspiracist beliefs scale
Public Opinion on Conspiracy Theories

Social category differences and smear acceptance
Smearing the opposition: Implicit and explicit stigmatization of the 2008 US Presidential candidates and the current US President
Is Obama the Anti-Christ? Racial priming, extreme criticisms of Barack Obama, and attitudes toward the 2008 US presidential candidates
The Effects of Semantics and Social Desirability in Correcting the Obama Muslim Myth
Biased Assimilation, Attitude Polarization, and Affect in Reactions to Stereotype-Relevant Scientific Information
Undermining the corrective effects of media-based political fact checking? The role of contextual cues and naïve theory

Negation and corrections
Incrimination Through Innuendo: Can Media Questions Become Public Answers?
“I am not guilty” vs “I am innocent”: Successful misperception negation may depend on the schema used for its encoding
When “Just Say No” is not enough: Affirmation versus negation training and the reduction of automatic stereotype activation
Spinoza’s error: Memory for truth and falsity
The Effects of Semantics and Social Desirability in Correcting the Obama Muslim Myth

Ambivalence and attitude certainty
Attitudinal Ambivalence and Message-Based Persuasion: Motivated Processing of Proattitudinal Information and Avoidance of Counterattitudinal Information
A new look at the consequences of attitude certainty: The amplification hypothesis

“Matching,” affect, and persuasion
“Think” Versus “Feel” Framing Effects in Persuasion
Cognitive and affective matching effects in persuasion: An amplification perspective

Majority/minority dynamics and social context effects in persuasion
The effects of minority/majority source status on attitude certainty: A matching perspective
Beyond attitude consensus: The social context of persuasion and resistance
The impact of the social context on resistance to persuasion: Effortful versus effortless responses to counter-attitudinal information

Source effects and elite configurations
How Elite Partisan Polarization Affects Public Opinion Formation
Shot by the Messenger: Partisan Cues and Public Opinion Regarding National Security and War
Who Said What? The Effects of Source Cues in Issue Frames
Source Credibility and Attitude Certainty: A Metacognitive Analysis of Resistance to Persuasion
Partisan Perceptual Bias and the Information Environment
Featuring Skeptics in News Media Stories About Global Warming Reduces Public Beliefs in the Seriousness of Global Warming

Belief perseverance and the continued influence effect
Perseverance in self-perception and social perception: Biased attributional processes in the debriefing paradigm
Self-enhancement and belief perseverance
Experiments on partisanship and public opinion: Party cues, false beliefs, and Bayesian updating, Chapter 2
Beliefs Don’t Always Persevere: How political figures are punished when positive information about them is discredited
Sources of the continued influence effect: When misinformation in memory affects later inferences
The continued influence of misinformation in memory: What makes a correction effective?
Explicit warnings reduce but do not eliminate the continued influence of misinformation
Belief Echoes: The Persistent Effects of Corrected Misinformation

The illusion of truth effect
How warnings about false claims become recommendations
Metacognitive experiences and the intricacies of setting people straight: Implications for debiasing and public information campaigns
Rumors, Truth, and Reality: A Study of Political Misinformation

Distortions in social dissemination of information
Communicating Stereotype-Relevant Information: Is Factual Information Subject to the Same Communication Biases as Fictional Information? Maintaining cultural stereotypes in the serial reproduction of narratives

Emotional responses to political information
Civic Engagements: Resolute Partisanship or Reflective Deliberation The Affective Tipping Point: Do Motivated Reasoners Ever “Get It”? How I Vote Depends on How I Feel: The Differential Impact of Anger and Fear on Political Information Processing Mad enough to see the other side: Anger and the search for disconfirming information

Resistance to scientific evidence

Vaccine misinformation
Effective Messages in Vaccine Promotion: A Randomized Trial Countering antivaccination attitudes Negative Affect as a Mechanism of Exemplification Effects Vaccine Risk Perceptions and Ad Hoc Risk Communication: An Empirical Assessment The Effects of Anti-Vaccine Conspiracy Theories on Vaccination Intentions I Immunise: An evaluation of a values-based campaign to change attitudes and beliefs
Interventions to reduce motivated reasoning

Overcoming Intuition: Metacognitive Difficulty Activates Analytic Reasoning
Disfluency disrupts the confirmation bias
Polarized Attitudes Toward the Ground Zero Mosque are Reduced by
High-Level Construal
Political Extremism is Supported by an Illusion of Understanding
Flash report rubric

<table>
<thead>
<tr>
<th>Criteria</th>
<th>A</th>
<th>A-/B+</th>
<th>B/B-</th>
<th>C/D/F-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction and theory</td>
<td>Precisely identifies research hypotheses and provides strong substantive and theoretical motivations for research project</td>
<td>Identifies research hypotheses and provides substantive and theoretical motivations for research project</td>
<td>Hypothesis described but not precisely or correctly specified; motivations incomplete or unconvincing</td>
<td>Theory incorrectly or vaguely stated; lacks appropriate substantive and/or theoretical motivation</td>
</tr>
<tr>
<td>Methods</td>
<td>Specifies all important aspects of how study was conducted in detailed and replicable fashion; convincingly motivates and defends key choices in design process</td>
<td>Specifies most important aspects of how study was conducted in relatively clear manner; addresses possible concerns about key choices in design process</td>
<td>Specifies some important aspects of how study was conducted; methods not always well explained; does not sufficiently address possible concerns about choices in design process</td>
<td>Does not provide or clearly explain most important aspects of how study was conducted; lacks appropriate justification of key design choices</td>
</tr>
<tr>
<td>Results</td>
<td>Figures and tables illustrate findings in an intuitive and easy-to-understand way; text explains results precisely and without statistical errors; investigation of hypothesis thorough and detailed</td>
<td>Figures and tables illustrate findings reasonably clearly; textual explanations of results is clear; statistical approach largely correct and error-free</td>
<td>Figures and tables unappealing or poorly constructed; some imprecision or errors in textual discussion of results; hypotheses not thoroughly investigated</td>
<td>Figures and tables sloppy or hard to understand; text vague or incorrect; statistical errors in analysis; cursory investigation of hypotheses</td>
</tr>
<tr>
<td>Discussion and conclusions</td>
<td>Perceptive and detailed discussion of limitations of findings, potential explanations for those findings, substantive and theoretical conclusions, and possible future research</td>
<td>Clear and thoughtful discussion of limitations of findings, potential explanations for those findings, substantive and theoretical conclusions, and possible future research</td>
<td>Some useful discussion of limitations of findings, potential explanations for those findings, substantive and theoretical conclusions, and possible future research</td>
<td>Vague, incomplete, or unconvincing discussion of limitations, implications, and conclusions</td>
</tr>
<tr>
<td>Writing quality</td>
<td>Exceptionally well-written—precise, clear, and mistake-free; concise and elegant</td>
<td>Very well-written—clear and articulate; few or no typos; not too long</td>
<td>Moderately well-written; some typos; wordy or vague</td>
<td>Unclear, awkward, or imprecise writing; numerous typos; too long and wordy or too short and vague</td>
</tr>
</tbody>
</table>
Critiques rubric

<table>
<thead>
<tr>
<th>Criteria</th>
<th>A</th>
<th>B</th>
<th>C/D/F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thesis/argument</td>
<td>Clear, strong arguments that go beyond description, address important objections</td>
<td>Discernible arguments but not strong/clear enough or too much description</td>
<td>Unclear or weak arguments; mainly description or assertion; incomplete</td>
</tr>
<tr>
<td>Originality</td>
<td>Creative new arguments or approaches—combines or applies theories in new ways</td>
<td>Some analytical originality in approach; opportunities for greater creativity</td>
<td>Little originality; relies mainly on arguments and evidence from class/sources</td>
</tr>
<tr>
<td>Evidence</td>
<td>Numerous, varied, and relevant details and facts provided in support of arguments</td>
<td>Details and facts support arguments, but more needed or some lacking relevance</td>
<td>Some details and facts to support arguments, but not enough and/or lack relevancy</td>
</tr>
<tr>
<td>Use of course concepts</td>
<td>Excellent understanding of course concepts and insightful application to research topic</td>
<td>Conveys familiarity with course concepts; applies concepts to topic appropriately</td>
<td>Basic course concepts not applied appropriately; incorrect or incomplete</td>
</tr>
<tr>
<td>Organization</td>
<td>Clear, logical organization that develops argument appropriately; does not stray off topic</td>
<td>Organization not totally clear; some digressions or lack of needed structure</td>
<td>Organization is unclear and/or paper strays substantially from agreed-upon topic</td>
</tr>
<tr>
<td>Quality of expression</td>
<td>Excellent grammar, vocabulary, and word choice</td>
<td>Some errors, imprecision, or room for improvement in writing</td>
<td>Awkward, imprecise, sloppy, or error-filled writing</td>
</tr>
</tbody>
</table>
Guide to setting your directory and opening data in Stata

1. All analysis in Stata should be conducted using .do files, which are scripts we use to ensure that our results are replicable. Each should begin by opening the original source data (don’t modify it!).

2. Your .do file must begin with the clear command. This will ensure that you clear the memory of Stata before opening a dataset, preventing an error that will otherwise occur if you already have data open (even if you opened the data during a previous run of the .do file that you are working on).

3. The clear command should be followed by a cd command telling Stata the path to the folder where your data lives, which is called the working directory (you can get the correct path by selecting the data file and choosing Get Info on a Mac from the file menu or right-clicking on a file in Windows and selecting Properties). The path should be specified as "/users/..." or "C:" depending on whether you have a Mac or PC. Type help cd in Stata or click the link in the help file to the manual for more. (Note: I recommend creating a GOVT 10 Stata folder for your data and .do files, which will help keep you organized and avoid cluttering your desktop.)

4. The CSV data files needed for the problem sets are listed above — make sure to save them to the correct directory. To open them, use the import delimited command, which opens non-Excel spreadsheet files that aren’t in Stata format (see help import delimited for more). To open a Stata data file (.dta) that is in your working directory, use the use command instead. Sample code for my computer:

```
clear
cd "~/Documents/Dropbox/Quantitative Political Analysis/Outside data/
import delimited "Iran_2009.csv"
```

or

```
clear
cd "~/Documents/Dropbox/Quantitative Political Analysis/Outside data/
use "gdvote.dta"
```

5. Any operations or analysis that you wish to perform should follow in the .do file below the code described above. Stata will run each line of the file in order.

6. The sample .do file provided on Canvas includes Stata code that you can easily adapt for your own analyses.

7. For more assistance, please consult the many resources listed earlier in the syllabus.
Notes on Qualtrics and general suggestions

Qualtrics notes:

- You typically want to randomize at the block level in Qualtrics - see http://www.qualtrics.com/university/researchsuite/advanced-building/survey-flow/block-randomization. In the simplest version, you put the treatment condition in one block, control condition in another, and randomly present one (see instructions at link above), but this design can easily be made more complex as needed. (Note: You must have at least two blocks so that Qualtrics can randomize among them. Do not turn on “Evenly present elements” — we want a random draw for each respondent.)

- You can also randomize question order (see http://www.qualtrics.com/university/researchsuite/advanced-building/blocks-and-block-options/question-randomization) and the order of response options (see http://www.qualtrics.com/university/researchsuite/basic-building/question-options/choice-randomization).

- To insert an image, see http://www.qualtrics.com/university/researchsuite/basic-building/editing-questions/rich-text-editor/insert-an-image.

- Qualtrics has very useful files that you can find using Google. For instance, I found the link above with insert image qualtrics as my search terms. So if you’re stuck, just Google. For instance, to create a new block, you would search for qualtrics new block, which will lead you to http://www.qualtrics.com/university/researchsuite/advanced-building/blocks-and-block-options/about-blocks.

- After completing your study in Qualtrics and downloading the data, you will have to process it slightly before it is ready for use in Stata. Usually the first row in a data file consists of variable names and the observations begin on the second row, but Qualtrics puts variable labels or question wording in row 2 below the variable name, which causes Stata to create a phantom observation and treat all of your variables as strings. You should create a new version of the spreadsheet, delete row 2, save the spreadsheet, and import that file (once saved) into Stata.

- To determine which randomized block was viewed by respondents in the Qualtrics data, your best bet is to look at the text for each variable in the results. The blocks should be listed as two (or more) different variables in the CSV output file that you open in Excel. If you tell it to code unseen items as -99 on the download results screen, you should most likely see 1 in the column corresponding to the block they saw and clicked through and -99 for the one they didn’t. Or if they didn’t click
through on the block that they saw, it should be blank instead of taking a value of 1. You can then use these values to generate a treatment variable in Stata that takes a value of 1 if they were in the treatment condition and 0 if they were in the control condition (or correspondingly for more complicated designs).

- Your data will come from Qualtrics in a form that often doesn’t mean anything. For instance, if your treatment variable `qualtricstr` has the values of 1 for treatment and 4 for control, you need to make a new variable in Stata like this:

  ```stata
  gen treatment=. /*missing as default*/
  replace treatment=0 if qualtricstr==1
  replace treatment=1 if qualtricstr==4
  ```

 If your outcome variable starts with low values as high or in some other form that is nonsensical to analyze directly, then you need to make a new variable where the values make sense. Consider an Obama approval variable that comes in from Qualtrics as 1=approve, 2=disapprove, 3=don’t know. You need to make a new variable to analyze where high values represent what the variable is called and/or means like this:

  ```stata
  gen obamaapp=. 
  replace obamaapp=1 if approve==2 
  replace obamaapp=2 if approve==3 /*treats DK as neutral/middle*/ 
  replace obamaapp=3 if approve==1
  ```

- Once your data are imported into Stata and you have made new variables to work with in this way (when necessary), I recommend consulting the sample do-file on Canvas for syntax to follow in performing common statistical procedures.