Relating application frequency to morphological structure:
the case of Tommo So vowel harmony*

Laura McPherson (Dartmouth College) and Bruce Hayes (UCLA)

Abstract

We describe three vowel harmony processes of Tommo So (Dogon, Mali) and their interaction with morphological structure. The verbal suffixes of Tommo So occur in a strict linear order, establishing a Kiparskian hierarchy of distance from the root. This distance is respected by all three harmony processes; they “peter out”, applying with lower frequency as distance from the root increases. The function relating application rate to distance is well fitted by families of sigmoid curves, declining in frequency from one to zero. We show that, assuming appropriate constraints, such functions are a direct consequence of Harmonic Grammar. The crucially conflicting constraints are IDENT (violated just once by harmonized candidates) and a scalar version of AGREE (violated 1-7 times, based on closeness of the target to the root). We show that our model achieves a close fit to the data while a variety of alternative models fail to do so.

*We would like to thank Robert Daland, Abby Hantgan, Jeffrey Heath, Kie Zuraw, audiences at the Linguistic Society of America, the Manchester Phonology Meeting, Academia Sinica, Dartmouth College and UCLA, and the anonymous reviewers and editors for *Phonology* for their help with this article; all remaining defects are the authors’ responsibility. We are also indebted to the Tommo So language consultants who provided all of the data. This research was supported by a grant from the Fulbright Foundation and by grants BCS-0537435 and BCS-0853364 from the U.S. National Science Foundation.
1. Introduction

In Tommo So, a Dogon language of Mali, there are three vowel harmony processes, all optional. Our focus is on the fact that for all three processes, application frequency interacts with morphological structure: intuitively, harmony “peters out”, in the sense that it applies with gradually diminishing frequency in outer layers of the morphology (defined by the possibilities of affix order, following Kiparsky 1982). Each process peters out at a different rate: Low Harmony gives out earliest (applying only within the innermost morphological layers), Backness Harmony next, and ATR Harmony last. The graph in (1) gives the basic pattern.

(1) Tommo So vowel harmony: application rates by morphological layer

We propose a formal model of this pattern, drawing on two ideas in phonological theory: Harmonic Grammar (Legendre, Miyata, and Smolensky 1990, Smolensky and Legendre 2006, Pater 2009, Jesney 2010, Potts et al. 2010, Jesney and Tessier 2011) and scalar constraints (Prince and Smolensky 1993; Frisch, Broe, and Pierrehumbert 1997, 2004; Flemming 2001). We show that this model achieves a far better fit to the data than a number of alternatives, notably the inverted exponential model of Guy (1991).

Our paper is structured as follows: In §2 we review a crucial generalization from Kiparsky that establishes the theoretical context of our work. §3 gives basic background (vowel inventory and verbal morphology of Tommo So), then motivates the morphological layers with data from affix ordering. In §4, we illustrate the three vowel harmony processes, and in §5 give the quantitative data. §6 applies Guy’s multiplicative model to our data and demonstrates that it provides a poor fit. §7 is the main analytic section: we propose a set of constraints and deploy them in Harmonic Grammar, achieving a greatly improved fit to the data. We also show that our approach is restrictive: only certain frequency patterns can be generated. §8 reviews other
linguistic phenomena showing similar quantitative patterns, while §9 addresses theories that can describe our data but are not restrictive. §10 covers residual issues, and §11 concludes.

2. The theoretical context: affix order and phonological process applicability

Our work pursues an insight from Kiparsky (1982): affix ordering and the applicability of phonological processes tend to be closely correlated. Specifically, affixes that occur “closer to the root,” as diagnosed by ordering tests, characteristically trigger or undergo more phonological processes. Kiparsky suggested that this correlation is “a general property of languages” (p. 11), and in light of this proposed a Strong Domain Hypothesis (1984:142): “at lower levels of the lexicon and in the postlexical phonology rules may be ‘turned off’ but no new ones may be added.” Our Tommo So data follow this pattern, but in a gradient way (“turning off” is gradual); thus we will be treating the Kiparskian correlation in different theoretical terms.

We emphasize that the concept of root closeness on which Kiparsky relies is abstract: it is not the literal distance seen within individual forms but is rather calculated by examining the morphology as a system. To give Kiparsky’s example (1982:11): English has two negative prefixes, non- and in-, of which the latter may occur as il- by assimilation, as in illegible. When the two prefixes cooccur, non- may precede in-, but not vice versa: non-illegible but not *in-non-legible. This fact is reflected in the phonology: the process that assimilates /n/ to [l] before [l] is applicable to in- (illegal, illegible) but not to non- (*nol-legible). The essential correlation is between morphological distance — as reflected in the general affix ordering principles — and phonological process application. It remains true that linearly, the non- of non-legible is just as close to the root (adjacent) as the il- of illegible; the criterion of distance is inferred from examination of the morphology as a whole.

We will see that Tommo So constitutes a far more elaborate case of the correlation of “closeness” as diagnosed by affix order and phonology.

3. Background on Tommo So

3.1 Language and data sources

Tommo So is spoken by about 60,000 people living on the Bandiagara Escarpment in Mali (Hochstetler et al. 2004). It is documented in a reference grammar by McPherson (2013). To our knowledge there has been no previous theoretical work on Tommo So vowel harmony; Hantgan and Davis (2012) treat harmony in the related Bondu-so, but the patterning of the latter system is quite different.

The data for this article were gathered by McPherson in Mali during a total of 14 months of fieldwork (2008-2012). There were four primary consultants, all from the commune of Tédié; their speech is relatively uniform, and it is reasonable to consider the data as reflecting one single dialect of Tommo So.

There exists no large corpus of Tommo So language material. The data we used were obtained by combing through the entirety of McPherson’s field materials (consisting of an extensive lexicon, example sentences, and a variety of narratives, traditional stories, and
conversations) for words containing any of the suffixes under consideration (§3.3); if the form contained no suffix vowel (due to vowel hiatus resolution, (12)), it was deemed uninformative and not included. We mined this corpus (2818 forms) for the statistical generalizations given below. While the corpus is hardly a random sample, there is no reason to expect that the words obtained were biased concerning vowel harmony; most were elicited for other reasons, such as analysis of the morphology or of tone. Stylistically, the corpus is fairly uniform: 78% of forms come from elicited material. The full corpus is available in the online Supplemental Materials.

3.2 The vowel system

The Tommo So vowel inventory is given in (2):

(2) Tommo So vowels

\[
i (i) \quad u \quad i: \quad u:\n\]
\[
e \quad o \quad e; \quad o;:\n\]
\[
\varepsilon \quad \varepsilon: \quad \varepsilon:\n\]
\[
a \quad a:\n\]

Seven vowel qualities are contrastive \([i e \varepsilon a o u]\), for which minimal and near-minimal sets are given in (3a); the corresponding long vowel phonemes are illustrated in (3b). Long and short vowels of the same quality behave identically in harmony. Sound files illustrating the vowels may be found in the Supplemental Materials.

(3) Examples of Tommo So vowels

a. /i/ [bìl] ² ‘ladder’
 /e/ [bèl] ‘grass’
 /e/ [bèl] ‘animal’
 /a/ [kidè bāl] ‘gathered thing’
 /ɔ/ [ǎŋà bōl] ‘mouth sore’
 /o/ [bōl] ‘sweep up (village)’
 /u/ [būl] ‘small pox’

b. /i:/ [ɡir] ‘talisman to stop bleeding or diarrhea’
 /e:/ [džeːlɛ] ‘goat’s waddle’
 /e:/ [džeːlɛ] ‘bring’
 /a:/ [dzáːlā] ‘sweep a little’
 /ɔː/ [dʒɔːlɔ] ‘rooster’s waddle’
 /oː/ [dʒɔːlɔ] ‘foot chain’
 /uː/ [dʒʊːlɔ] ‘twin’

Additionally, [i] and [u] are often reduced in medial position, creating the high central vowel \([i].\) In this environment, there is no phonemic contrast among the high vowels \([i u i]\); what one hears is often phonetically intermediate. In faster speech \([i]\) normally appears, whereas in slower speech the output tends to be closer to \([i]\) or \([u]\). The latter choice is determined in part by whether the reduced vowel is in a root or a suffix. In roots, the determining factor is normally the

¹ Posted at www.dartmouth.edu/~mcpherson/papers-and-handouts/Harmony_supplements.html and www.linguistics.ucla.edu/people/hayes/TommoSoVH.

² Tone is phonemic, contrasting High, Low, and toneless; see McPherson (2013, ch. 4).
preceding vowel ([i e ɛ] tend to favor [i]-like qualities; [u o ɔ] favor [u]-like qualities). When the root vowel is [a], the quality of the reduced vowel is influenced by the place of articulation of neighboring consonants (labials tend to prefer [u], coronals [i]). In the three suffixes that include a reduced vowel (Reversive, Transitive, and Mediopassive; §3.3), the reduced vowel tends to surface in slower speech as [i], though both [i] and coarticulatorily-induced [u] are also observed.

Phonologically, vowel reduction is important because reduced vowels are transparent to harmony. As far as the underlying representations of reduced vowels, this is indeterminate (since their backness and rounding are not contrastive); somewhat arbitrarily we will depict UR’s with their most typical surface vowel.

We adopt the following feature assignments for Tommo So vowels; 0 indicates underspecification and [ATR] denotes Advanced Tongue Root (Halle and Stevens 1969). The feature [reduced] is employed as an ad hoc stand-in; in a fully formalized theory reduced vowels would be identified by their weak position in metrical structure.

(4) Features for Tommo So vowels

<table>
<thead>
<tr>
<th></th>
<th>[high]</th>
<th>[low]</th>
<th>[back]</th>
<th>[ATR]</th>
<th>[reduced]</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>0</td>
<td>−</td>
</tr>
<tr>
<td>e</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>ɛ</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>a</td>
<td>−</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>−</td>
</tr>
<tr>
<td>ɔ</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>o</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>u</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>0</td>
<td>−</td>
</tr>
<tr>
<td>i</td>
<td>+</td>
<td>−</td>
<td>0</td>
<td>0</td>
<td>+</td>
</tr>
</tbody>
</table>

The distribution of the feature [round] is predictable, since vowels are [+round] when [+back] and otherwise [−round]; for brevity we omit the straightforward rules or constraints that would be needed to fill in this value. It is sensible to treat [back] as the phonologically active feature; [a] turns out to be a non-trigger of Backness Harmony (see §4.3 below), and this may plausibly be related to the fact that it is phonetically neither front nor back. We leave [ATR] unspecified in nonmid vowels simply as an expression of agnosticism; we have no phonological or phonetic evidence to justify a classification.

3.3 Verbal morphology

In this section we give an overview of Tommo So verbal morphology, focusing on the suffixes that demonstrate the affiliation of affix ordering and harmony application; see McPherson (2013:§11-12) for further detail. For simplicity at this preliminary stage we give examples that happen not to involve vowel harmony.
3.3.1 Derivational suffixes

The Factitive, which we treat as underlying /-ndé/, derives transitive verbs from intransitive ones (often with causative meaning), as in [džimé] ‘be injured’ ~ [džimé-ndé] ‘injure’. It can also be used to derive inchoative verbs from adjectives (always in conjunction with the Mediopassive suffix), as in [pálá] ‘long’ ~ [pálá-nd-íjé]³ ‘become long’.

The Reversive suffix is /-ílɛ́/, as in [dɛ̀bɛ́] ‘get stuck’ ~ [dɛ̀b-ílɛ́] ‘get unstuck’.

Transitive /-íɾɛ́/ denotes that the subject is performing the action of the verb to or on someone else, as in [tɛ́mbɛ́] ‘find oneself in a situation’ ~ [tɛ́mb-íɾɛ́] ‘make somebody find something’.

Mediopassive /-íjɛ́/ denotes that the subject is performing the action on herself; thus [pɛ́ndɛ́] ‘spread out (objects)’ ~ [pɛ́nd-íjɛ́] ‘(group) spread selves out’.

The Causative suffix is /-mɔ́/ as in [sɛ́mɛ́] ‘slaughter’ ~ [sɛ́mɛ́-mɔ́] ‘make slaughter’.

3.3.2 Inflectional suffixes

Only one inflectional suffix undergoes vowel harmony: the Defocalized Perfective, which is the version of the perfective employed when some element in the clause other than the verb is focused. This suffix has two allomorphs, /-i/ and /-è/. Their distribution is somewhat complex, and the harmonic behavior of the two is somewhat different. We will only discuss the /-i/ allomorph in this paper, since the /-è/ allomorph never cooccurs with other suffixes, making it impossible to justify a morphological layer on the basis of affix ordering. For further discussion see McPherson (2013: §12.4). An example of the /-i/ allomorph is [nɔ́ːlɔ́] ‘mix’ ~ [nɔ́ːl-i] ‘mixed’.

There are a fair number of other inflectional suffixes, which all appear outside of the derivational suffixes and none of which alternate by harmony. They include /-èlɛ́/ ‘negative imperfective’, /-dɛ́/ ‘affirmative imperfective’, /-a]/ ‘perfective nonfinal’, /-ɛ]/ ‘imperfective nonfinal’, /-lɪ]/ ‘negative perfective’, /-gú/ ‘negative imperative’, and /-mɔ́/ ‘hortative’.

3.4 The system of vowel phonemes in suffixes

We see above that a wide variety of contrasting vowel qualities appear in Tommo So verbal suffixes: /i/, /u/, /a/, /ɛ́/, /ɛ̀/, and /ɔ́/ all occur (we assume the absence of /o/ is an accidental gap). This would likely defeat any effort to derive suffix vowel qualities by some sort of default

³ Underlyingly /pálá-nd-íjé/; for the hiatus resolution seen in this and other examples see §4.2.
insertion processes (as a reviewer suggested to us), and in what follows we will assume fully specified underlying suffix vowels.

3.5 Suffix ordering

Here, we set out the principles of affix ordering in Tommo So, extending Kiparsky’s ordering test to the more elaborate Tommo So ordering pattern. What emerges is a whole chain of pairwise orderings, diagnosing a system of morphological levels or layers.

To begin, we find that the Factitive precedes the Mediopassive, as in [pálá-nd-ijé] ‘long-FACTITIVE-MEDIOPASSIVE’ = ‘become long’. The opposite order is never found (*[X-ijé-ndé]). The same test with other pairs yields the same result: only one order is possible. For brevity, we summarize the results of this test in (5):

(5) a. Factitive before Mediopassive
 írè-nd-ijé ‘better-FACTITIVE-MEDIOPASSIVE’ = ‘get better’

b. Reversive before Mediopassive
 mènn-il-ijé ‘fold-REVERSIVE-MEDIOPASSIVE’ = ‘become unfolded’

c. Transitive before Mediopassive
 só-ír-ijé ‘sweat-TRANSITIVE-MEDIOPASSIVE’ = ‘sweat’

d. Mediopassive before Causative
 jùb-ijé-mó ‘spill-MEDIOPASSIVE-CAUSATIVE’ = ‘spill’

e. Causative before Perfective
 èbè-m-i ‘buy-CAUSATIVE-PERFECTIVE’ = ‘X made buy’

Moreover, the combinations we might expect on grounds of transitivity (like Factitive before Causative) are generally attested, a point we will not document here. Naturally, in some words there are multiple suffixes present, and these reflect the same ordering generalizations as the two-suffix forms; e.g. àmá-nd-ijè-m-i ‘rancid-FACTITIVE-MEDIOPASSIVE-CAUSATIVE-PERFECTIVE’.

To test our affix ordering principles, we used the entire database, extracting from it all words in which two or more verbal affixes attach to the same root. We find that ordering is entirely consistent: there are no cases whatsoever in which two affixes occur in the opposite order to what is given above in (5). However, there is one set of affixes (Factitive, Reversive, Transitive)

4 A caveat: Transitive and Mediopassive seldom cooccur, but the attested cases are ordered as shown.
that never cooccur and thus cannot be assessed for linear order. The results of our ordering study are given in (6) as a Hasse diagram.

(6) **Affix ordering in Tommo So verbs**

```
Root
   /\   
Factitive Reversive Transitive
       \   /
    Mediopassive
       /\   /
     Causative Perfective
```

For purposes of the analysis to follow, we elaborate these empirical findings into a system of morphological layers, along the lines envisioned in the theory of Lexical Phonology (Kiparsky 1982 et seq.). We label our layers as in (7).

(7) **Morphological layers assumed for Tommo So**

1. Root
2. Factitive /-ndé/ (derivation)
3. Reversive /-ilé/ (derivation)
4. Transitive /-iré/ (derivation)
5. Mediopassive /-ijé/ (derivation)
6. Causative /-má/ (derivation)
7. Defocalized Perfective /-í/ (inflection)

These reflect the ordering observations summarized in (6), but go further in placing Factitive, Reversive, and Transitive in separate layers. The placement of Transitive in a layer “outside” Factitive and Reversive can be defended on the grounds that the Transitive is more productive and semantically transparent than the latter two suffixes; it is a characteristic of most level-ordered morphological systems that productive and transparent affixes gravitate to outer layers (see, e.g., Katamba 2004). The same reasoning might also justify the placement of Reversive outside Factitive, although the difference in productivity is not as clear in this case.

The system of levels we propose relies on a set of assumptions about how children project the level system from learning data. Our suggestion is that children seek out the *richest* level system compatible with the data (in contradistinction to the “level-economizing” approach of classical Lexical Phonology), and that in setting up levels they rely on multiple sources of information. Of these, pairwise affix order is most crucial; that children attend closely to pairwise order is demonstrated by Ryan’s (2010) account of Tagalog. We also assume that children supplement ordering information with further evidence from transparency and productivity. The relatively elaborate structure of (7) is what emerges from this learning process. We suggest that a rich level system is not unique to Tommo So; parallel systems are seen
wherever linguists have posited rich “position class” morphology, as in Athabaskan (e.g. Hargus 1988), Nimboran (Inkelas 1993), or several of the languages given in Nida (1949).

4. The vowel harmony pattern

With the principles of affix ordering in place, we turn to the other side of the Kiparskian correlation: the applicability of phonological processes, here vowel harmony.

We give the facts of Tommo So vowel harmony first in rule-based phonology (Chomsky and Halle 1968 = SPE), employed for its descriptive precision. In this framework, Tommo So would be considered to have three vowel harmony rules, one each for the features [low], [back], and [ATR]. Since harmony is frequently optional, we will give examples for each harmony process of both application and non-application.

4.1 Verb roots

As in other languages (see e.g. Kiparsky 1973:36 on Finnish, Clements and Sezer 1982:222-231 on Turkish), the vowel harmony pattern applies slightly differently within roots vs. in affixes, so we discuss the two separately. Harmony is also slightly different for verbs vs. nouns, and we will be focusing on verbs here. For roots, we give data based on a corpus of verbal roots (all of the affixes we discuss are verbal suffixes), which appears as Table 1.

Table 1: Sequences of vowels in Tommo So verb roots

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>e</th>
<th>ε</th>
<th>a</th>
<th>o</th>
<th>o</th>
<th>u</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>i</td>
<td>9</td>
<td>39</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ε</td>
<td>4</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2</td>
<td>a</td>
<td>2</td>
<td>4</td>
<td>151</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>o</td>
<td></td>
<td>2</td>
<td>100</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td>49</td>
<td>43</td>
<td>8</td>
</tr>
</tbody>
</table>

Black = ATR disharmonic, dark grey = Backness disharmonic, light grey = Low disharmonic

The rows of Table 1 are labeled with the first vowel of a root, the columns with the second or third vowels (roots are maximally three syllables); thus the “9” in the upper leftmost cell indicates nine cases in the corpus in which a root has [i] as its first vowel and another [i] as its second or third vowel.

The boxed regions of the table, showing non-initial high vowels, require comment. In Tommo So, verb roots may not end in a high vowel; thus all of these high vowel counts represent medial high vowels in trisyllabic roots. As such, they are in the context for vowel reduction, and
the observed distribution between [i] and [u] reflects the allophonic variation among reduced vowels noted in §3.2.

It is evident that many logically possible sequences of vowels are absent or severely underrepresented. These gaps are due to vowel harmony. The black boxes represent forms excluded by ATR Harmony, the dark grey boxes represent forms excluded (with just two exceptions) by Backness Harmony, and the light grey boxes represent forms excluded (with just four exceptions) by Low Harmony. We turn now to a detailed description of each harmony process.

4.2 Low Harmony

We state Low Harmony as an SPE-style rule in (8):

\[
\text{Low Harmony} \quad \begin{bmatrix} V \\ \text{[-reduced]} \end{bmatrix} \rightarrow \text{[low]} / \# \begin{bmatrix} V \\ \text{[low]} \end{bmatrix} X _--
\]

“A nonreduced vowel takes the same value of [low] as the initial vowel.”

Here, \(X \) stands for any sequence, meaning that the rule can apply non-locally, affecting all the non-initial vowels of the word.\(^6\) The surface pattern implied by (8) is as follows. [a] is never followed by a mid vowel ([−high, −low]), nor can [a] ever come after an initial vowel other than [a]. Initial high vowels trigger Low Harmony, since in that position they are not reduced (§3.2). Thus, an initial high is never followed by [a]. But high vowels may follow initial [a], either because they are medial and therefore reduced, or because they occur in the Defocalized Perfective suffix and are therefore outside the domain of Low Harmony; see (13).

The effects of Low Harmony can be seen clearly in our verb root corpus. In Table 1, the cells that would be excluded by Low Harmony are shaded light gray, forming a gapped cross seven cells high by five wide. Some representative data illustrating the pattern, as well as exceptions, are given in (9).

(9) Low Harmony in roots

a. Regular forms

[ámá] ‘be fattened’

b. (Rare) exceptional forms

[sáxé] ‘die without being slaughtered’

\(^5\) We gloss over a fairly major though orthogonal issue concerning the relationship of harmony to prosodic structure. A Finnish precedent for our claim that initial, prosodically-prominent vowels can trigger harmony non-locally is given by Ringen and Heinämäki (1999:316).

\(^6\) Reviewers ask if harmony is statistically more reliable in local contexts, i.e. when the trigger and target are in adjacent syllables. It appears that there is a modest effect of this kind, notably, disyllabic stems have only about a 1% harmony exception rate, whereas it is about 7% for the final vowels of trisyllabic stems. In principle we could complicate our analyses to include the local/nonlocal distinction, but trisyllabic stems are so rare (about 10% of the total) that the payoff in accuracy would be small.
[dâmbá] ‘push’ [jâmįndzé] ‘rub soap’
[ádibá] ‘think’
[dènné] ‘look for’
[sûmmó] ‘dilute’

The words given in (9b) represent two out of the total of only four exceptions in roots.

Consider next the behavior of Low Harmony in suffixes. Because of “petering out”, Low Harmony affects only the two suffixes that form the innermost layers of the morphology ((7)). The Factitive suffix surfaces as [-ndá] when it follows a root with an initial low vowel, but as any of [-ndé], [-ndê], [-ndó], or [-nd5] in other contexts, depending on other vowel harmony processes. We treat the Factitive as underlying /-ndé/, the value that surfaces when no vowel harmony process applies.

(10) Low Harmony in Factitive forms
a. /dzàá̯-ndé/ → [dzàá̯-ndá] ‘meal-FACTITIVE’ = ‘cook’
b. /dàgá-ndé/ → [dàgá-ndá] ‘be.good-FACTITIVE’ = ‘fix’

The application rate of Low Harmony for Factitive forms is about 85%. By this we mean, of all cases in the data where a low-vowel root precedes the Factitive suffix, 85% surface with a lowered Factitive vowel. An example of non-application is [dzàá̯-ndé], which is the very same word as (10a), uttered by the same speaker on a different occasion.

We treat the Reversive suffix as underlying /-ilé/. For this suffix, the application rate of Low Harmony is only 20%. When Low Harmony applies, the Reversive surfaces as [-ilá]; otherwise, it appears after [a] as its underlying form [-ilé], or else as [-ilé], [-iló], or [-il5] where other vowel harmony processes are applicable. It can be observed that application of Low Harmony to this suffix is non-local, skipping over the reduced suffix-initial vowel.

(11) Low Harmony in Reversive forms
a. Application
/pândâ-îlê/ → [pând-îlá] ‘widow-REVERSIVE’ = ‘marry a widow’
/mâna-îlê/ → [mâna-îlá] ‘seal-REVERSIVE’ = ‘unseal’

b. Non-application
/pândâ-îlê/ → [pând-îlê] (in free variation with (11a))
/jâmbâ-îlê/ → [jâmb-îlê] ‘cover-REVERSIVE’ = ‘uncover’

The forms in (11) illustrate another phonological process of Tommo So, the resolution of hiatus. Normally, when suffixation creates a sequence of two vowels, the first of the two is deleted (McPherson 2013, §3.7.3). The process is stated in (12).
(12) **Hiatus Resolution**

\[V \rightarrow \emptyset / __ _ V \]

Hiatus Resolution can be seen in the first form in (11a) and the forms in (11b), where the final /a/ deletes before suffix-initial /i/. The second form in (11a) is an irregular case, with hiatus resolved by loss of the second vowel.

The remaining suffixes fall outside the domain where Low Harmony applies. In (13), we give examples of non-application for these suffixes.

(13) **Non-application of Low Harmony to the remaining suffixes**

a. /jâmbá-ířé/ → [jâmbíře] (*[jâmbířá]) ‘cover-TRANSITIVE’ = ‘cover’
b. /jâmbá-ijé/ → [jâmbíjé] (*[jâmbijá]) ‘cover-MEDIOPASSIVE’ = ‘cover oneself’
c. /káná-mó/ → (no change; *[kánámá]) ‘do-CAUSATIVE’ = ‘make do’
d. /káná-ì/ → [kâni] (*[kâni]) ‘do-PERFECTIVE’ = ‘did’

4.2.1 **Excursus: defining application rate**

Since application rates are the key data in this article, we take a moment to define them, using examples from the data just presented. There are four relevant categories.

b. **Non-application.** Process is applicable but does not apply, resulting in surface disharmony. Example: [dzâá-ndé] ‘meal-FACTITIVE’, given above.

c. **Vacuous application.** Process is applicable, but its conditions were already met in the input, so application is vacuous. Example: /jê-ndé/ → [jê-ndé] ‘see-FACTITIVE’ = ‘look at’.

d. **Inapplicability.** Process is simply not applicable. This never arises for Low Harmony, since it is triggered by any vowel. A legitimate example arises below for Backness Harmony: by our statement (16) below it is not triggered by the low vowel [a], so any disyllabic form whose first vowel is [a] would be a case of inapplicability.

In what follows, we will define application rate by the formula in (15):

\[
\text{cases of nonvacuous application} \\
\frac{\text{cases of nonvacuous application} + \text{cases of nonapplication}}{\text{cases of nonvacuous application + cases of nonapplication}}
\]

\[7\text{ The Defocalized Perfective form is characterized by an all-L grammatical tone pattern (McPherson 2013:§12.4.1).} \]
The numerator counts forms in which application produces an observable change, and the denominator counts all cases of potential applicability. This definition is the sensible one to use here, as it matches the criterion of adequacy for a constraint-based analysis (see §7 below). In cases of vacuous application or inapplicability, the faithful candidate incurs neither Markedness nor Faithfulness violations and will always win, making it uninformative about ranking or weighting.

4.3 Backness Harmony

The Backness Harmony pattern can be described with the following rule:

(16) \begin{align*}
&\text{Backness Harmony} \\
&\left[\begin{array}{c}
V \\
-\text{reduced}
\end{array} \right] \rightarrow [\alpha_{\text{back}}] / \# C_0 \left[\begin{array}{c}
V \\
\alpha_{\text{back}}
\end{array} \right] X \\
&\text{“A nonreduced vowel takes the same value of [back] as the initial vowel.”}
\end{align*}

We first cover some details of the pattern. First, under the feature system we assume, [a] cannot be a trigger of Backness Harmony, since it has no backness value that can be transmitted to the target vowel. Hence [a] is compatible with both front and back following vowels. Moreover, it is impossible to tell if [a] is an undergoer of Backness Harmony because there are no possible inputs; in roots, Low Harmony eliminates all non-initial [a] after backness-specified vowels, and there are no low-vowel suffixes in the layers of the morphology where harmony prevails. Second, Backness Harmony does not target reduced vowels (see §3.2 above) because, as noted above, their backness is gradient and determined by coarticulation.

Turning to the data, we first illustrate Backness Harmony with data from roots, as summarized above in Table 1. With very rare exceptions (about 1.7% of all forms), the front vowels [i e e] may only cooccur with front vowels, and the back vowels [u o o] only with back vowels (see grey region of table). In (17) we give examples of both normal harmonic roots and of the rare exceptions.

(17) \begin{align*}
&\text{Backness Harmony in roots} \\
&\text{a. Regular forms} \\
&[\text{gijé}] \quad \text{‘harvest’} \\
&[\text{kérē}] \quad \text{‘bite’} \\
&[\text{dùgó}] \quad \text{‘casts spells’} \\
&[\text{bógóló}] \quad \text{‘bellow’} \\
&\text{b. Exceptional forms} \\
&[\text{gòbôdé}] \quad \text{‘barely touch’} \\
&[\text{kójé}] \quad \text{‘be hoarse’}
\end{align*}

In suffixes, we find a consistent pattern of “petering out” as we move morphologically away from the root. We cover the suffixes in order below.

In the Factitive, Backness Harmony is virtually exceptionless; (18b) is the only exceptional form in the corpus. For completeness, we include cases of both vacuous and nonvacuous application.
(18) Backness Harmony in Factitive forms

a. Application

/dɔ̌ː-/ → [dɔ̀ː-] ‘arrive-FACTITIVE’ = ‘move (sth) near’
/gòː-/ → [gòː-] ‘go.out-FACTITIVE’ = ‘take (sth) out’
/dùː-/ → [dùː-] ‘bottom-FACTITIVE’ = ‘put down’

b. Non-application

/dʑɔ̀ɔ̌-/ → (same) ‘run-FACTITIVE’ = ‘make run’

c. Vacuous application

/ʃɛ̀-/ → [ʃɛ̀-] ‘see-FACTITIVE’ = ‘look at’
/ʃɛ̀ː-/ → [ʃɛ̀ː-] ‘know-FACTITIVE’ = ‘introduce’
/ʃɛ̀ːmɛ́-/ → [ʃɛ̀ːmɛ́-] ‘be.hurt-FACTITIVE’ = ‘hurt (sb)’

d. Inapplicable

/dʑàː-/: [dʑàː-] or [dʑàː-] ‘meal-FACTITIVE’ = ‘cook’

Form (18d) shows optional application of Low Harmony. It also forms part of the evidence that [a] is not a Backness Harmony trigger: in the variant where Low Harmony does not apply, we get [e] as the suffix vowel, which reflects the underlying form. In all other forms of (18), the suffix also harmonizes for the feature [ATR], to be discussed below.

The next morphological layer consists of the Reversive suffix. Here, Backness Harmony is only slightly less robust, applying to 90.9% of applicable forms.

(19) Backness Harmony in Reversive forms

a. Application

/gɔ̌ːn-ː-/ → [gɔ̌ːn-ː] ‘fence.in-REVERSIVE’ = ‘unfence’
/tòŋ-ː-/ → [tòŋ-ː] ‘crumple-REVERSIVE’ = ‘uncrumple’
/mùnn-ː-/ → [mùnn-ː] ‘roll-REVERSIVE’ = ‘unroll (mat)’

b. Non-application

/mùndz-ː-/ → [mùndz-ː] ‘break-REVERSIVE’ = ‘break off’

8 This tonal alternation is due to Tonal Absorption (McPherson 2013:§4.3.1); Rise becomes Low before High.

9 This form has a noun base; we include it to show that [u] is a backness harmony trigger; for discussion of ATR harmony with noun bases, see fn. 14.
/úmɔ́-ílɛ́/ → [úm-ílɛ́] ‘breathe-REVERSIVE’ = ‘resuscitate’

c. **Vacuous application**

/dèbè-ílɛ́/ → [dèb-ílɛ́] ‘get.stuck-REVERSIVE’ = ‘get unstuck’
/nèmbè-ílɛ́/ → [nèmb-ílɛ́] ‘trim-REVERSIVE’ = ‘cut off branch’
/dinè-ílɛ́/ → [din-ílɛ́] ‘tie-REVERSIVE’ = ‘untie’

d. **Inapplicable**

/tágå-ílɛ́/ → [tág-ílɛ́] ‘shoe-REVERSIVE’ = ‘take off shoes’

The vowel transcribed as [i] in these forms is a reduced vowel (see §3.2), hence skipped over by harmony. Once again, we see ATR alternations as well as backness alternations.

At the next morphological layer, Transitive, the application rate of Backness Harmony drops to 69%. Again, we see that [a] is not a trigger, that the reduced vowel [i] in the suffix is transparent, and that ATR alternations accompany backness alternations.

(20) **Backness Harmony in Transitive forms**

a. **Application**

/ɔ́g-írɛ́/ → [ɔ́g-írɔ́] ‘hot-TRANSITIVE’ = ‘heat (sth)’¹⁰
/dògò-írɛ́/ → [dòg-írɔ́] ‘be.face.up-TRANSITIVE’ = ‘hold (sth) face up’
/túŋ-írɛ́/ → [túŋ-írɔ́] ‘kneel-TRANSITIVE’ = ‘make kneel’

b. **Non-application**

/ɔ́g-írɛ́/ → [ɔ́g-írɛ́] (same input form as above, same speaker)¹¹
/sònnúgó-írɛ́/ → [sònnúg-írɛ́] ‘place on shoulders-TRANSITIVE’ = ‘put on somebody else’s shoulders’

c. **Vacuous application**

/sè-írɛ́/ → [sè-írɛ́] ‘adorn-TRANSITIVE’ = ‘adorn (sb)’¹²
/tègè-írɛ́/ → [tèg-írɛ́] ‘drip-TRANSITIVE’ = ‘make drip’
/dimbè́/ → [dimb-írɛ́] ‘follow-TRANSITIVE’ = ‘make follow’

d. **Inapplicable**

/tágå-írɛ́/ → [tág-írɛ́] ‘shoe-TRANSITIVE’ = ‘put shoes on somebody’

¹⁰/ɔ́g/ is an adjectival root. This may be a case of deadjectival derivation; alternatively, we could set up the bound verbal root /ɔ́gɔ́/, whose second vowel is always lost by Hiatus Resolution.

¹¹ Indeed, the two free variants were uttered in the same session, about ten minutes apart.

¹² Bound root /sè/; long vowels shorten rather than deleting prevocalically.
In the Mediopassive, the application rate of Backness Harmony is 44%.

(21) Backness Harmony in Mediopassive forms

a. Application

/tómó-ijé/ → [tóm-ijó] ‘wind-MEDIOPASSIVE’ = ‘become wound up’
/tópó-ijé/ → [tóp-ijó] ‘curl.up-MEDIOPASSIVE’ = ‘be curled up’
/júbó-ijé/ → [jùb-ijó] ‘spill-MEDIOPASSIVE’ = ‘be spilled’

b. Non-application

/tómó-ijé/ → [tóm-ijó] ‘wind.up-MEDIOPASSIVE’ = ‘be wound up’
/góró-ijé/ → [gór-ijó] ‘hat-MEDIOPASSIVE’ = ‘wear a hat’
/mùnnó-ijé/ → [mùnn-ijó] ‘roll-MEDIOPASSIVE’ = ‘be rolled up’

c. Vacuous application

/péndé-ijé/ → [pénd-ijé] ‘make.tight-MEDIOPASSIVE’ = ‘get crowded’
/déélé-ijé/ → [déél-ijé] ‘hang-MEDIOPASSIVE’ = ‘be hanging’
/timbo-ijé/ → [timb-ijó] ‘stack-MEDIOPASSIVE’ = ‘become stacked’

d. Inapplicable

/ká-ijé/ → [kán-ijé] ‘do-MEDIOPASSIVE’ = ‘take place’

In the Causative, the application rate is just 18%.

(22) Backness Harmony in Causative forms

a. Application

/témé-mó/ → [téme-mé] ‘eat-CAUSATIVE’ = ‘make eat’
/biré-mó/ → [biré-mé] ‘work-CAUSATIVE’ = ‘make work’

b. Non-application

/kéré-mó/ → [kéré-mó] ‘bite-CAUSATIVE’ = ‘make bite’
/jémé-mó/ → [jémé-mó] ‘melt-CAUSATIVE’ = ‘make melt’
/sidé-mó/ → [sidé-mó] ‘pay-CAUSATIVE’ = ‘make pay’

c. Vacuous application

/déélé-bó-mó/ → [déél-óbó-mó] ‘run-CAUSATIVE’ = ‘make run’
/óbó-mó/ → [óbó-mó] ‘give-CAUSATIVE’ = ‘make give’
The form [káná-mɔ́] in (22d) should be compared with (21d), [kán-íjé]: the pair illustrates that [a] is not a Backness Harmony trigger and that after [a]-roots the underlying backness value of the suffix surfaces; i.e. /-mɔ́/ vs. /-íjé/. Since /-mɔ́/ is underlyingly [+back], our examples of non-application involve front-vowel roots.

Finally, in the Defocalized Perfective, the Backness Harmony rate is 13.6%.

(23) Backness Harmony in Defocalized Perfective forms

a. Application

/bòdô-i/ → [bòd-ù] ‘put-PERFECTIVE’ = ‘put’
/óbó-i/ → [òb-ù] ‘give-PERFECTIVE’ = ‘gave’
/dzungó-i/ → [dzùŋg-ù] ‘nod-PERFECTIVE’ = ‘nodded’

b. Non-application

/bògsló-i/ → [bògsl-i] ‘chatter-PERFECTIVE’ = ‘chattered’
/bòdô-i/ → [bòd-i] ‘put-PERFECTIVE’ = ‘put’
/dzungó-i/ → [dzùŋg-i] ‘nod-PERFECTIVE’ = ‘nodded’

c. Vacuous application

/ségré-i/ → [sègré-i] ‘meet-PERFECTIVE’ = ‘met’
/dèkibé-i/ → [dèkibé-i] ‘shake-PERFECTIVE’ = ‘shook’

d. Inapplicable

/káná-i/ → [kàn-i] ‘do-PERFECTIVE’ = ‘did’

All remaining morphology has a Backness Harmony rate of zero; by this point, Low and ATR Harmony have also petered out. Thus the suffixes (all inflectional; §3.3.2) have but a single surface realization.

4.4 ATR Harmony

The feature [ATR] is phonemic in Tommo So only for the class of mid vowels [e ɛ o ɔ]. It is these vowels that form both the trigger and target class for ATR Harmony, stated as a rule in (24).
(24) *ATR Harmony*

\[
\begin{bmatrix}
V \\
-\text{high} \\
-\text{low}
\end{bmatrix} \rightarrow [\alpha\text{ATR}] / \begin{bmatrix}
V \\
-\text{high} \\
-\text{low}
\end{bmatrix}_{\alpha\text{ATR}}
\]

“A mid vowel takes the ATR value of the closest preceding mid vowel.”

In verb roots, ATR Harmony is exceptionless: see Table 1, where the eight black boxes represent the eight logically possible sequences of disagreeing mid vowels ([e e], [o o], etc). We give a few representative harmonic roots in (25).

(25) *ATR Harmony in roots*

a. [ébé] ‘buy’
b. [gégédé] ‘(insects) nibble’
c. [kóróndó] ‘snore’
d. [kómmó] ‘crumple’
e. [gòbódó] ‘barely touch’

Form (25e) shows that even forms that are exceptions to Backness Harmony obey ATR Harmony.

The high vowels [i] and [u] are not ATR triggers: in roots they may cooccur with either [+ATR] vowels [e o] or [−ATR] vowels [ɛ ɔ], in either order, as shown in (26).

(26) *Free combination of [i] and [u] with both values of [ATR]*

a. [kídé] ‘discuss’
b. [pídé] ‘cry’
c. [údá] ‘build’
d. [túndzó] ‘slap wet laundry against a stone’

In principle, we could test our claim of non-triggerhood with suffix data, but due to the phonotactic restriction on high vowels in verb roots (§4.1), no actual cases arise: all roots contain at least one non-high vowel, and a high vowel will never be the closest vowel to the suffix. For this reason, the rule is formulated with the closest mid vowel as trigger rather than the initial vowel (as in Low and Backness Harmony).

The low vowel [a] likewise does not trigger ATR Harmony; after [a], suffixes surface unaltered for [ATR]. Thus the mid allomorph of the Defocalized Perfective (§3.3.2), which in general is harmonic, surfaces after [a] with its underlying value of [−ɛ] (e.g. /bálá-ɛ/ → [bál-ɛ])

13 However, there is a small class of Factive forms where they do seem to act like ATR triggers; see fn. 14.
‘sweep-PERFECTIVE’ = ‘swept’). All remaining mid-vowel suffixes have the underlying value of [−ATR], and after [a], this is preserved; see data below.

We now exemplify the applicability of ATR Harmony in each layer of the morphology. Here, the data are far simpler, because the harmony rate is always either 100% or zero. For the Factitive, Reversive, Transitive, and Mediopassive, the harmony rate is 100%. The actual allomorph that surfaces depends also on the other forms of harmony.

(27) ATR Harmony in Factitive forms

a. Application

/dèé-ndé/ → [dèè-ndé] ‘know-FACTITIVE’ = ‘introduce’
/gòó-ndé/ → [gòò-ndó] ‘go.out-FACTITIVE’ = ‘take out’

b. Vacuous application

/jè-ndé/ → [jè-ndé] ‘see-FACTITIVE’ = ‘watch’
/dɔ̀bɔ̄-ndé/ → [dɔ̀bɔ̄-ndó] ‘run-FACTITIVE’ = ‘make run’

c. Inapplicable

/dzàà-ndé/ → [dzàà-ndá] or [dzàà-ndé] ‘meal-FACTITIVE’ = ‘cook’

(28) ATR Harmony in Reversive forms

a. Application

/némbé-ilé/ → [némb-ilé] ‘trim-REVERSIVE’ = ‘cut off a branch’
/tɔŋŋó-ilé/ → [tɔŋŋ-iló] ‘crumple-REVERSIVE’ = ‘uncrumple’

b. Vacuous application

/dèbè-ilé/ → [dèb-ilé] ‘get.stuck-REVERSIVE’ = ‘get unstuck’
/tɔmɔ́-ilé/ → [tɔm-ilɔ́] ‘wind-REVERSIVE’ = ‘unwind’

c. Inapplicable

14 There is a minor conundrum involving the Factitive suffix that we have not resolved: the very small amount of evidence we have (four roots) indicates that high vowel roots trigger [+ATR] in the Factitive; for instance [dù-ndò] ‘bottom-FACTITIVE’ = ‘put down’. All four roots are nominal or adjectival; as already noted, verb roots may not end in high vowels, which is why these examples are rare. The appearance of [+ATR] vowels in post-high Factitives is a puzzle, since high vowels are fully compatible with [−ATR] vowels in roots (see (26)). To solve this, we might add an additional minor phonological process specific to the Factitive, or perhaps adopt a special underlying representation for it (e.g. underspecified for [ATR], or multiple listed allomorphs). As this behaviour does not appear to bear on our main point, we will not attempt to resolve it here.
(29) ATR Harmony in Transitive forms

a. Application
 /tégé-írɛ́/ → [tég-írɛ́] ‘drip-TRANSITIVE’ = ‘make drip’
 /dògó-írɛ́/ → [dòg-írɛ́] ‘be.face.up-TRANSITIVE’ = ‘hold (sth) face up’

b. Vacuous application
 /témbé-írɛ́/ → [témb-írɛ́] ‘find-TRANSITIVE’ = ‘make find’
 /óg-írɛ́/ → [óg-írɛ́] ‘hot-TRANSITIVE’ = ‘heat (sth)’

c. Inapplicable
 /tágá-írɛ́/ → [tág-írɛ́] ‘shoe- TRANSITIVE’ = ‘put shoes on somebody’

(30) ATR Harmony in Mediopassive forms

a. Application
 /dʐèlé-ɪjɛ́/ → [dʐèl-ɪjɛ́] ‘hang-MEDIOPASSIVE’ = ‘be hanging’
 /tóŋné-ɪjɛ́/ → [tóm-ɪjɛ́] ‘crumple-MEDIOPASSIVE’ = ‘become crumpled’

b. Vacuous application
 /pɛ́ːnd-ɪjɛ́/ → [pɛ́ːnd-ɪjɛ́, pɛ́ːnd-ɪjɛ́] ‘eat-CAUSATIVE’ = ‘make eat’

c. Inapplicable
 /tágá-ɪjɛ́/ → [tág-ɪjɛ́] ‘shoe- MEDIOPASSIVE’ = ‘put shoes on oneself’

For the Causative suffix, the harmony rate is zero. Hence it always surfaces as [−ATR]; usually [−mɛ́] but sporadically [−mɛ̃] due to Backness Harmony.

(31) ATR Harmony in Mediopassive forms

a. Non-application
 /dzèŋné-mɔ́/ → [dzèŋné-mɔ́] ‘pick.up-CAUSATIVE’ = ‘make pick up’
 /óbó-mɔ́/ → [óbó-mɔ́] ‘give-CAUSATIVE’ = ‘make give’

b. Vacuous application
 /ŋjé-mɔ́/ → [ŋjé-mɔ́, ŋjé-ŋmɛ́] ‘eat-CAUSATIVE’ = ‘make eat’
Tommo So Vowel Harmony

The Factitive and Reversive suffixes show a five-way alternation ([e ~ ε ~ a ~ ɔ ~ o]), since all three harmony processes apply to them. The Transitive and Mediopassive suffixes have only four allomorphs ([e ~ ε ~ ɔ ~ o]), since Low Harmony peters out before reaching them. The Causative has but two allomorphs [ε ~ ɔ], determined by Backness Harmony, since ATR Harmony peters out before reaching it. The Defocalized Perfective likewise has only two allomorphs ([i ~ u]), determined by the only applicable harmony process, Backness Harmony.

15 Both -ndé and -ilé occur zero times after [o] roots in the data corpus. We treat these cases as accidental gaps, resulting from (a) [o] being somewhat less common than other vowels in Tommo So; and (b) Backness Harmony being almost obligatory for the Factitive and Reversive suffixes. The probability that a total of zero tokens for these allomorphs could arise by chance can be calculated at .51 for -ndé and .2 for -ilé; thus there is little support for the view that these absences are meaningful.
5. Frequency of application: the data

In (32) we compile the application rates reported above for all three harmony processes in all morphological contexts. The frequency values represent token frequency, calculated by counting each instance of a repeated underlying form as a separate case. Moreover, where a form has two harmonizing suffixes (none has three), it is counted twice, once for each suffix; this makes sense because what we seek to model is the rate at which each suffix undergoes harmony. Application rates are shown first as a table and then in graph form, fleshing out figure (1); error bars represent 95% Clopper–Pearson binomial confidence intervals.

(32) Application rates by suffix and harmony process

a. Table

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>%</th>
<th>Backness</th>
<th>%</th>
<th>ATR</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Root</td>
<td>151/155</td>
<td>97.4</td>
<td>470/478</td>
<td>98.3</td>
<td>264/264(^{16})</td>
<td>100</td>
</tr>
<tr>
<td>2. Factitive</td>
<td>57/67</td>
<td>85.1</td>
<td>95/96</td>
<td>99</td>
<td>80/80</td>
<td>100</td>
</tr>
<tr>
<td>3. Reversive</td>
<td>12/61</td>
<td>19.7</td>
<td>40/44</td>
<td>90.9</td>
<td>43/43</td>
<td>100</td>
</tr>
<tr>
<td>4. Transitive</td>
<td>0/15</td>
<td>0</td>
<td>40/58</td>
<td>69</td>
<td>31/31</td>
<td>100</td>
</tr>
<tr>
<td>5. Mediopassive</td>
<td>0/167</td>
<td>0</td>
<td>107/243</td>
<td>44</td>
<td>231/231</td>
<td>100</td>
</tr>
<tr>
<td>6. Causative</td>
<td>0/42</td>
<td>0</td>
<td>13/72</td>
<td>18.1</td>
<td>0/43</td>
<td>0</td>
</tr>
<tr>
<td>7. Perfective</td>
<td>0/119</td>
<td>0</td>
<td>17/125</td>
<td>13.6</td>
<td>N/A</td>
<td>—</td>
</tr>
</tbody>
</table>

\(^{16}\) Root rates calculated as follows: denominator = number of forms that match the structural description of the rules in §4, numerator is the number of harmony-compliant forms; we make no claims about the UR’s of harmonized roots. Our method of calculating root rates is somewhat arbitrary but we assume that other choices would yield very similar results; by any criterion all three harmony processes are very close to being obligatory in roots.
As can be seen, for two of the harmony processes, application peters out gradually going outward from the root. ATR Harmony instead plummets from 100 to 0% at the Mediopassive-Causative break.

The two gradient processes peter out in a particular way, forming *sigmoid* (S-shaped) curves. When we turn to our analysis below (§7), our primary goal will be to derive this sigmoid shape in terms of principles well-motivated in linguistic theory.

6. **An earlier proposal: the inverted-exponential model**

Before doing this, we first review what might be considered the “standard model” for relating morphological distance to phonological process application, namely the widely-cited proposal put forth by Guy (1991). Guy developed his model in the course of studying the system of simplification in English final C + {t,d} clusters, which likewise applies with lower frequency in outer layers of the morphology.

In Guy’s model, the diminishing frequency of application emerges directly from the architecture of the grammar. He adopts the general approach to morphological layering assumed in the theory of Lexical Phonology and Morphology (Kiparsky 1982 et seq.), in which layers are the result of a sequence of derivationally ordered levels. For English, the innermost level, to be called Level 0, is the root; thus when the /t/ of a simplex form like *act* is dropped in fluent speech, this is a case of a Level 0 /t/. The intermediate Level 1 is the domain of the /t/ that occurs as a non-productive past tense suffix, triggering stem allomorphy in words like *kept* [kɛpt]. The outermost Level 2 is the domain of the regular past tense allomorph seen in words like *tripped* [tɹɪpt].
Studies examining the dropping of alveolar stops in consonant clusters have consistently found a petering out effect (Labov et al. 1968, Labov 1969, Wolfram 1969, Fasold 1972, Guy 1980, Neu 1980, Nesbitt 1984). For example, in Santa Ana’s study of Chicano English (1991), root-level alveolar stops are deleted 74.3% of the time; intermediate-level 59.3%, and outermost-level 42.1%.

In Guy’s model, such frequencies emerge from the system of level organization. He proposes that the -t,d Deletion rule has a constant application rate, which can vary from dialect to dialect. Moreover, -t,d Deletion applies at all three morphological levels, and failure to apply on one level does not preclude application on a later level. Thus, for roots like act there are three chances for -t,d Deletion to apply, for kept there are two, and for tripped there is just one, as shown in (33).

(33) *Morphological structure and rule application in the model of Guy (1991)*

\[\begin{array}{ccc}
\text{a. Level 0} & \text{b. Level 1} & \text{c. Level 2} \\
\text{Monomorphemic} & \text{“Tightly-bound” suffix} & \text{“Loosely-bound” suffix} \\
{[[[ækt]]]_0} & {[[kep] t]}_2 & {[[trɪp]] t}_1 \\
3 \text{ chances} & 2 \text{ chances} & 1 \text{ chance} \\
\end{array}\]

Assuming an application rate \(r \), then after \(n \) chances to apply, the “survival rate” is \((1 - r)^n \) and the application rate is therefore predicted to be \(1 - (1 - r)^n \). If we plot application rate against \(n \) for various values of \(r \), we get a family of inverted exponential curves, as in (34).
When a phonological process applies at more than one level, we can predict the application rate for all later levels using the inverted exponential formula (in the English case, given just one parameter, we predict three observed values). For the data from Santa Ana mentioned above, this is a fairly good fit, as shown in (35).\footnote{For a recent critique of the model as applied to English -\textit{t},\textit{d} Deletion, see Fruehwald (2012: 79-80), who suggests that the best-fit values of \textit{n} in the model formula actually do not come out cleanly as integers when we include a random effect for word identity. For a case where the effect of morphological level failed to reach significance for deletion data, see Tagliamonte and Temple (2005).}
The inverted-exponential model applied to cluster simplification

We applied the inverted-exponential model to the Tommo So data ((32a)). Since we assume seven morphological levels for Tommo So, in the crucial formula $1 - (1 - r)^n$, n will range from 1 to 7. Using the default settings of the Solver package in Excel, we found for each harmony process the value for r that best fits the data, assuming mean absolute error as our criterion of model fit.\(^{18}\) We set the application rate so as to minimize model error rather than by selecting any particular level (such as the stem) as criterial; our procedure gives the benefit of the doubt to the model. The resulting fit was poor, as (36) indicates.

\(^{18}\) The details of model-fitting apparently matter rather little. We rechecked our work with other software and with hand search, and also using mean squared error rather than absolute error as our criterion; the values of r that emerged were similar in all cases. The spreadsheets for model fitting are available in the online Supplemental Materials.
Visually, the model matches poorly to the data; the mean absolute error is 0.181.19 Qualitatively, the inverted exponential curves are a poor match to the empirical curves, which, as graph (32b) above indicates, are not inverted U’s but rather are S-shaped.

7. Deriving the data pattern with Harmonic Grammar

We attempt to find a better analysis, using ideas from current phonological theory. Ideally, sigmoid shapes will not be stipulated but will follow naturally from deeper principles.

We adopt two tools from current theorizing. First, we employ the constraint-based framework of \textit{Harmonic Grammar} (Legendre, Miyata, and Smolensky 1990, Smolensky and Legendre 2006, Pater 2009, Jesney 2010, Potts et al. 2010, Jesney and Tessier 2011). This framework resembles Optimality Theory (Prince and Smolensky 1993/2004) but uses weighted instead of ranked constraints. In brief, every constraint bears a weight (a real number, representing its strength); every candidate is assigned a value (its \textit{harmony}), a sort of penalty score, which is computed by multiplying weights by violation counts and summing. In the simplest version of the theory, the winning candidate is the one with the best (lowest) harmony value.

19 Error by harmony type: Low 0.249, Back 0.134, ATR 0.157.
Since the data involve variation, we need a probabilistic implementation of Harmonic Grammar. There are two such implementations, which turn out to work about equally well. We give first an analysis with maxent grammar (Smolensky 1986, Goldwater and Johnson 2003; Wilson 2006; Hayes and Wilson 2008), then an analysis with Noisy Harmonic Grammar (Boersma and Pater, in press).

The second theoretical tool we will use is the idea that harmony for some constraints is calculated by multiplying the constraint weight by a value along a scale. For us, the scale will be an abstract morphological notion, “closeness to the root,” based on the evidence given in §3.5. The values we adopt for our scale are as in (37).

(37) **The “root-closeness” scale**

<table>
<thead>
<tr>
<th></th>
<th>Root</th>
<th>Factitive</th>
<th>Reversive</th>
<th>Transitive</th>
<th>Mediopassive</th>
<th>Causative</th>
<th>Perfective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

The use of scales in constraint-based grammar has a long history. The original work in Optimality Theory, Prince and Smolensky (1993:§5.2), suggested a constraint HNUC that is gradiently violable, based on the sonority of the segment occupying nuclear position in a syllable. Frisch, Broe, and Pierrehumbert (1997, 2004) took the next step, adopting constraint weights of which one was multiplied by the value on the relevant scale (a similarity metric for pairs of consonants in Arabic verbal roots); indeed, the math they employed is a special case of the maxent framework we will be employing. For Flemming (2001), the crucial scale was phonetic, namely values of second formant frequencies and their (squared) deviations from a target. Using a framework essentially identical to Harmonic Grammar with scalar constraints, Flemming found that he could derive the well-known “locus effect” in phonetics (Sussman et al. 1993) from first principles. A more recent Harmonic Grammar study, Kimper (2011), uses scales based on locality, vowel quality, and similarity to govern variable application of vowel harmony. We pursue the ideas in these works using our morphological-distance scale.

To obtain the scale of (37), we arrange the affixes in descending order of root-closeness. Each suffix is separated from its neighbor(s) by the arbitrarily-chosen value of 1. As we will show, selecting a separation value different from 1 yields exactly the same predictions, once the weights have been fitted to the data. It also makes no difference if we let the scale run between different termini, such 6 to 0 or 0 to −6. Spacing the suffixes along the scale unevenly would change the quantitative predictions of the analysis to a degree depending on the differences in spacing.

20 Prince and Smolensky avoid the use of actual integer values in their constraint, but the analytic effect is quite similar.

21 Our morphological distance scale reduces morphological structure to a single number, as given in (37). In doing this, we do not intend to reject the insights of stratal theories of phonology (Kiparsky 1982, 2000, 2008; Bermudez-Otero 1999); rather, we assume that root-closeness is an abstract property that not only serves to define the system of strata, but is also directly accessible to constraints; that is, the constraints “know” what layer a suffix belongs to and can access this information as a scalar value.

22 For nonlinear scales in harmonic grammar see Pater (to appear).
We seek a grammar that, for each combination of morphological layer and harmony process, yields a number expressing the probability of harmony as applied to the relevant suffix. To do this, we adopt a set of ordinary Markedness and Faithfulness constraints, letting the Markedness constraints refer to the root-closeness scale of (37). The constraints will be weighted in a way that generates a close match to the data.

7.1 Maxent calculations

In this section we briefly review the calculations of a maxent grammar; for fuller discussion see e.g. Goldwater and Johnson (2003), Hayes and Wilson (2008).

A maxent grammar assigns probabilities to candidates as follows. For each candidate for a given input, the first step is to calculate its harmony by multiplying each constraint weight by the number of violations of that constraint, then summing up across constraints, as in (38):

(38) **Calculation of harmony**

\[
H(x) = \sum_{i=1}^{N} w_i C_i(x)
\]

where

- \(x\) is some candidate.
- \(H(x)\) is the harmony value being computed for that candidate
- \(w_i\) is the weight of the \(i\)th constraint
- \(C_i(x)\) is the number of times that \(x\) violates the \(i\)th constraint
- \(\sum_{i=1}^{N}\) denotes summation over all constraints (\(C_1, C_2, \ldots, C_N\)).

For the present application, the calculation can be made particularly simple if we adopt the idealizing assumption that there are only two candidates to consider for each input, one for each value of the harmonizing feature. Thus, it is implicit in our account that other, non-stated constraints rule out any candidates not mentioned. For example, *[ndi] for Factitive /ndɛ/ can be assigned an arbitrarily low probability by giving IDENT(high) an indefinitely high weight.

Once the harmony of the two relevant candidates (Cand1 and Cand2) has been calculated, the probability of Cand1 is determined as in (39):
(39) *Probability of a candidate in maxent (two-candidate system)*

\[
p(Cand1) = \frac{\exp(-H(Cand1))}{\exp(-H(Cand1)) + \exp(-H(Cand2))}
\]

where

- \(p(x) = \) the probability of candidate \(x \)
- \(\exp(y) = e^y \), where \(e \) is the base of natural logarithms
- \(H(x) = \) the harmony of \(x \), from (38)

The probability of Cand2 is 1 minus the probability of Cand1. The overall pattern is that large harmony values (deriving from violations of strong constraints) produce low predicted probability values. The probability predicted for a candidate depends on the aggregate strength of its constraint violations, as well as those of the candidate with which it competes.

7.2 *Constraint set*

In our analysis for Tommo So, harmony is favored by Markedness constraints of the AGREE family (Lombardi 1999, Baković 2000); these are opposed by corresponding Faithfulness constraints of the IDENT family (McCarthy and Prince 1995). In (40) are given the three AGREE constraints; these are approximations, whose content is to be modified.

(40) a. AGREE(low): Assign a violation for every non-high vowel that disagrees in [low] with the initial vowel.

b. AGREE(back): Assign a violation for every vowel that disagrees in [back] with the initial vowel.

c. AGREE(ATR): Assign a violation for every mid vowel that disagrees in [ATR] with a preceding mid vowel.

The corresponding IDENT constraints are given in (41).

(41) a. IDENT(low): Assign a violation for every segment that disagrees in [low] with its underlying value.

b. IDENT(back): Assign a violation for every segment that disagrees in [back] with its underlying value.

c. IDENT(ATR): Assign a violation for every segment that disagrees in [ATR] with its underlying value.

23 The current theoretical climate for the analysis of vowel harmony is unsettled; a wide variety of constraints for enforcing harmony have been put forth. In addition to AGREE, the literature includes two types of ALIGN (of featural autosegments, Kirchner 1993, Ringen and Vago 1998; and of feature domains, Cole and Kisseberth 1994, McCarthy 2004), as well as SPREAD (Kaun 1995, Ni Chiosáin and Padgett 1997, Walker 1998) and systems based on agreement by correspondence (Rose and Walker 2004, Hansson 2006, Rhodes 2012). Our concerns are, we think, largely orthogonal to the current debates; what we need is *some* sort of constraint that can enforce featural agreement and we adopt AGREE as one option from among many.
7.3 Scalar constraints

The next step is to modify our Agree constraints so that they are sensitive to the morphologically-defined scale of (37). The idea is that when the target disagrees with the trigger vowel in the relevant way, the degree of the violation is determined by the morphological closeness of the target. In particular, following the references cited above we suggest that the number of violations for any particular Agree constraint is simply the value of the scale (37) for the target vowel. In essence, this turns the calculations of maxent from a multiplication of two values (weights times violations) to a multiplication of three (weights times violations times scalar value), as shown in (42):

(42) Harmony calculation with scalar constraints

\[H(x) = \sum_{i=1}^{N} w_i C_i(x) S_i(x) \]

where

\[S_i(x) \] is the value of candidate \(x \) along the scale invoked by constraint \(C_i \).

The constraints that invoke a scale in our analysis are the Agree() constraints of (40); it should now be understood that for each of these constraints, we are scaling the violations according to (37).

7.4 Establishing the weights

Most stochastic grammar theories come with a learning model. It is assumed that the human language learner brings the constraints to the task of acquisition and that the rankings or weights are determined algorithmically during the learner’s encounter with language data (see e.g. Tesar and Smolensky 2000, Boersma and Hayes 2001, and Boersma and Pater, in press). We adopt this approach here, using our data corpus as an approximation of real-life learning data.

For maxent, it matters little in practical terms what optimization algorithm is adopted for purposes of learning; the search space is free of local maxima (Della Pietra et al. 1997) and many procedures yield essentially the same result. Here, we chose to set the weights to minimize mean absolute error, since this is how we report model fit. For convenience and easy replicability we used the Excel Solver application in its default settings. As a check we recomputed the results with the Maxent Grammar Tool (Wilson and George 2009) and obtained very similar results. All weight-setting calculations are posted in the Supplemental Materials.

We fitted six numbers: the constraint weights for the three Ident() constraints and the three Agree() constraints. The procedure is noncircular, since we are using 6 values to predict 20 observations, i.e. the frequency of application for all possible combinations of harmony processes in 7 morphological contexts. The weights obtained were as follows.

(43) Grammar: constraint weights found
Results

From the grammar thus constructed we computed the predicted percentage of vowel harmony, using the root-closeness values of (37) and the maxent formulae in (39) and (42). These percentages, given in (44a), closely fit the original data; in fact, the mean absolute error of the maxent model is 0.012 (broken down by harmony type, this is: Low 0.012, Back 0.022, ATR 0.000). This compares very favorably with the 0.181 (Low 0.249, Back 0.134, ATR 0.157) obtained with the inverted exponential model.

(44) Results: grammar predictions vs. observed

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Root</td>
<td>97.4</td>
<td>98.4</td>
<td>98.3</td>
<td>99.1</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2.</td>
<td>Factitive</td>
<td>85.1</td>
<td>79.5</td>
<td>99</td>
<td>97.0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>3.</td>
<td>Reversive</td>
<td>19.7</td>
<td>19.7</td>
<td>90.9</td>
<td>90.4</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>4.</td>
<td>Transitive</td>
<td>0</td>
<td>1.5</td>
<td>69.0</td>
<td>73.1</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>5.</td>
<td>Mediopassive</td>
<td>0</td>
<td>0.1</td>
<td>44</td>
<td>44.0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>6.</td>
<td>Causative</td>
<td>0</td>
<td>0</td>
<td>18.1</td>
<td>18.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td>Perfective</td>
<td>0</td>
<td>0</td>
<td>13.6</td>
<td>6.2</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

While the superior fit of the model is encouraging, it is also important to understand the model from the viewpoint of restrictiveness — what sorts of frequency patterns could it model in principle? For this purpose it helps to consider in general terms how the model makes its predictions.

7.6 Sigmoid curves and their derivation

Harmonic grammars — in the general case — can be quite complex. Notably, Prince (1997) showed that under suitable idealizing assumptions, a harmonic grammar can mimic the behavior of any grammar expressed in Optimality Theory, hence all the intricate data patterns that can be derived with ranking in OT can also be derived in maxent. However, in the present case we have made an additional assumption that greatly simplifies analysis, namely that all candidates other than simple vowel harmony or the faithful realization are ruled out by other constraints. Hence only two candidates have any chance of winning, and it is solely the weights of AGREE() and IDENT() that determine the outcome.

24 We write Not Applicable here because as a high-voweled suffix the Perfective is ineligible for ATR Harmony. Were a mid-voweled suffix to occur in this slot the application rate predicted by the grammar would be zero.
Simple algebra tells us25 that under these circumstances, the only frequency patterns that can be derived by the grammar will take the form of sigmoid curves, of the particular type known as the \textit{logistic function}, widely used in statistical analysis. The form of the logistic function relating application frequency to morphological distance is given in (45) (it is obtained by substituting (38) and (42) into (39)). In the formula, we generalize from the specific Markedness and Faithfulness constraints used here to the case of any phonological process governed by a conflicting scalar Markedness constraint and nonscalar Faithfulness constraint.

(45) \textit{Sigmoid generated under our analysis}

\[P(\text{candidate undergoing phonology}) = \frac{1}{1 + e^{W_{\text{faith}} - (W_{\text{markedness}} \cdot s)}} \]

where \(s \) is the scale value of the candidate.

Plugging in our particular weights for Markedness and Faithfulness ((43)) into this formula, we can restate the table of (44) as a graph, plotting the predictions of the analysis as the sigmoid curves generated by the formula.

\footnote{25 We suppress the math here (it is textbook material, not research) but invite readers to peruse the online Supplemental Materials.}
Further math, given in the Supplemental Materials, demonstrates the restrictiveness of the approach and illuminates the role of the constraint weights in the analysis. The following mathematical results concerning the sigmoid curves are relevant.

Asymptotes at zero and one. Assuming sufficient room on the horizontal scale, the predicted application rate will asymptote at zero on the low end and one on the high end. Of course, it is possible that the actual values available in the language will not permit us to see these asymptotes; the curves can be “cut off” at one or both ends.

Location of 50% point. The application rate of the phonological process reaches 50% at a point that is determined by the ratio of the constraint weights, specifically at $s = \frac{w_{\text{Faith}}}{w_{\text{Markedness}}}$. For instance, the application rate for Low Harmony crosses 50% on our morphological closeness scale at 5.4 ($= 15.2/2.8$; for weights see (43)).

Symmetry. The sigmoid curve is symmetrical about the 50% point.

Steepest slope. The steepest slope of the curve occurs at the symmetry point and is determined solely by the weight of the Markedness constraint; specifically, it is equal to $\frac{w_{\text{Markedness}}}{4}$. For instance, in our analysis the essentially categorical cut-off for ATR Harmony is captured with a very high weight (34.8) for $\text{AGREE}(\text{ATR})$.

(46) Results: grammar predictions plotted as sigmoid curves
We emphasize that these predictions are specific to the Harmonic Grammar model; other theories do not make these predictions and for them the Tommo So data are correspondingly problematic; either the model fit is bad, as with the inverted exponentials discussed in §6, or the theory is not restrictive enough and can fit essentially any data (see §9).

We can now justify an assertion made earlier in connection with our root-closeness scale (37): it does not matter what we pick as the baseline value or interval size. As (45) suggests, different choices made for the root-closeness scale get canceled out when the best-fit weights are found. Thus, if we made the interval size of our scale 2 instead of 1, the best-fit model would use a value for w_{Agree} that was half as big. More generally, the expression $w_{\text{Faith}} - w_{\text{Markedness}}$ in (45) represents a linear rescaling ($y = mx + b$) of s, meaning that appropriate choices of weights exist that can compensate for any linear rescaling of (37).

7.7 A variant with Noisy Harmonic Grammar

We expressed our account in maxent, but this is not the only framework for stochastic analysis in Harmonic Grammar. In Noisy Harmonic Grammar (Boersma and Pater, in press), a “noise” factor drawn from the Gaussian distribution is added to the weight of each constraint every time the grammar is applied, and the output for any given input for that particular application is simply the most harmonic candidate. The probabilities of the candidates in the general case are defined as the probability distribution over multiple applications. The best-fit constraint weights can be calculated in various ways. Mathematically, NHG generates symmetrical zero-to-one sigmoid curves just like maxent, but the sigmoids are from a different function (the cumulative normal distribution) that is strikingly similar visually to the logistic function employed by maxent.

NHG turned out to work slightly better than maxent, with a mean absolute error of 0.009 (cf. maxent .012). Errors for each harmony process are Low 0.005, Back 0.021, ATR 0.000.

A technical issue in NHG arises of how the noise should be added in the case scalar constraints: in principle it could be added before the harmony contribution is multiplied by the scale value, so that noise itself gets multiplied. This produces asymmetrical sigmoids and indeed a slightly worse model fit (mean absolute error .031). The value .009 just mentioned is obtained by adding the noise after multiplication.

26 In Praat (Boersma and Weenink 2014) and OTSoft (Hayes et al. 2013), weights are found using Boersma’s Gradual Learning Algorithm, which employs random sampling. In the present case, since there are just two conflicting constraints, we found we could obtain a more accurate grammar by evaluating the Gaussian distributions directly using the Solver application in Excel; see Supplemental Materials for this calculation.

27 The NHG analysis can be replicated in the framework of Stochastic OT, following a strategy of Boersma (1998: §6, §8.4). Instead of a single Markedness constraint, one adopts a family of Markedness constraints, one for each morphological level, spaced at equal intervals along the ranking scale. This, too, generates sigmoid curves from the cumulative normal distribution. The slope of the sigmoid depends on the spacing of the members of the Markedness family, and the 50% crossing point is determined by the relative ranking of Markedness and Faithfulness. The consequences of fragmented constraints of this kind have been little explored in the literature, and the issue of the learnability of ranking values for Stochastic OT is also problematic (Pater 2008).
7.8 Returning to the English -t,d Deletion data

It is appropriate to ask whether the English -t,d Deletion data that motivated Guy’s inverted exponential theory can be modeled under our theory. The answer is that it can. In brief, we set up a -t,d Deletion model employing the weighted constraints \(*CT \) (cluster penalty, \(w = .69 \)) and \(MAX(T) \) (Faithfulness, \(w = 1.01 \)), with the root-closeness scale \(3= \) root, \(2= \) Level 1, \(1= \) Level 2. For the Santa Ana data this gets highly accurate results.²⁸

8. Sigmoid curves in linguistic theory

Sigmoids have provided good data fit in various places in linguistics, whenever a constraint with scalar violations stacks up against a constraint with constant violations. Albright (2012), in a study of phonotactics, finds that variable phonotactic disharmony scores get a closer fit to lexical frequency when pitted against the non-scalar constraint MPARSE(). In McClelland and Vander Wyck’s (2006) study of interacting phonotactic constraints in English, a term \(\beta \), analogous in effect to Albright’s MPARSE(), also improves model fit. Earlier, Frisch, Broe, and Pierrehumbert (1997) used a constant term \(K \) pitted against a scalar constraint in order to derive logistic curves predicting the frequency of consonant pairs in Arabic roots from their similarity. Zuraw (2012), studying morphophonemic Nasal Mutation in Tagalog, finds that the Tagalog prefixes differ in propensity to trigger Nasal Mutation, and stem-initial consonants differ in their propensity to undergo it; each prefix gives rise to its own sigmoid curve. Much earlier, Kroch (1989) presented a model in which a syntactic constraint rises in weight over time, overtaking a set of opposed statically-weighted constraints, thus creating a family of diachronic sigmoids; the model matches well with Kroch’s diachronic data. For further discussion see Zuraw (2003).

9. Two nonrestrictive approaches

We have thus far considered two models that work well in fitting the Tommo So data (maxent, NHG), and also some models that work poorly (inverted exponentials and the stripped-down constraint sets of fn. 28). Here we critique two models that fit the Tommo So data perfectly, but at great cost in restrictiveness.

9.1 Morpheme indexation

It is likely that there are phonological processes triggered by specific morphemes or undergone by specific morphemes. Pater (2000, 2010) suggests that particular Markedness or Faithfulness constraints can be indexed to particular morphemes. Work supporting this view

²⁸ Our own model has a greater number of parameters, and might be expected to have a better fit a priori. However, the fit of the inverted-exponential model to Tommo So does not improve substantially when we increase its number of parameters in the most obvious way, by adding an intercept term (which can raise or lower the overall height of the curve). We tried this approach and found that the mean absolute errors remain high: overall 0.172, Low 0.223, Back 0.134, ATR 0.156 (earlier 0.181/0.249/0.134/0.157). A reviewer also asked whether our own model could do as well if we reduced the number of parameters. We tried this first by setting Markedness to a UG-determined constant (fitting it to data from all three harmony processes at once) then by doing the same for Faithfulness. The resulting error values are high; 0.076/0.068/0.042/0.107 for constant Markedness and 0.090/0.123/0.055/0.080 for constant Faithfulness.

We have found that if we affiliate a separate AGREE constraint with each affix of Tommo So (along with one for roots), we can achieve a very good — indeed, perfect — fit to the data. For instance, we factored our system of AGREE constraints to include 21 constraints total — one for each combination of morphological type and harmony process; e.g. AGREEBackFactive. Coupled with our three IDENT constraints (41) and implemented in maxent, this achieves an essentially perfect data fit (mean error 0.0000064).

As a reviewer points out, this “would be a less restrictive model … since there would be no predicted connection between linear order of morphemes and frequency of alternation.” Indeed, the model is the least restrictive conceivable. No matter what data we gave it, constraint weights could be found that achieve a perfect fit.

A specific consequence is that morpheme indexation does nothing to explicate the essential Kiparskian generalization that application frequency diminishes in outer morphological layers. We think our approach is a better theory because it actually predicts this pattern. It remains a problem to explain why morpheme-specific Markedness or Faithfulness constraints do not commonly subvert the Kiparskian pattern; perhaps these constraints represent something of a “last resort” option of language learners, invoked only when more natural constraints cannot account for the data.

9.2 Domain-indexed constraints following a stringency hierarchy

A similar approach indexes constraints to morphological domains rather than individual morphemes. Kiparsky (1994), reanalyzing the English /t/-deletion pattern (§6), uses a model of this sort. The key idea is that “a violation at any given level is necessarily a violation at all superordinate levels (but not conversely).” Applied to /t/-deletion, the pattern would look like (47). Such a pattern is a stringency hierarchy (Prince 1997, de Lacy 2004) and may be related to the Strong Domain Hypothesis of Lexical Phonology (Kiparsky 1984, Myers 1991; rules may “turn off” at later levels but not “turn on”).

(47) Stringency hierarchy of Markedness on levels

<table>
<thead>
<tr>
<th>Candidates</th>
<th>*C + t_root</th>
<th>*C + t_stem</th>
<th>*C + t_word</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a. [cost]</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>1b. [cost]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a. [los+t]</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>2b. [los]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3a. [toss#t]</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>3b. [toss]#t</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kiparsky stipulated that the ranking probability between each indexed Markedness constraint and the opposing Faithfulness constraints must be exactly the same. With this condition, the theory makes exactly the same predictions as the rule-based approach of Guy that
inspired it. In particular, it works well for the English t-deletion data — but by the same token, it fails badly when applied to Tommo So.

On the other hand, as a reviewer suggested, the approach might be adapted to Tommo So by abandoning the assumption that the ranking probability with respect to Faithfulness must remain the same for each constraint in the stringency hierarchy. Pursuing this suggestion, we set up a hierarchy for the Tommo So AGREE constraints, illustrated here for Backness Harmony; example forms are taken from §4.

(48) *A stringency hierarchy of Markedness constraints for Backness Harmony*

<table>
<thead>
<tr>
<th></th>
<th>AGREE-Level 1 (root)</th>
<th>AGREE-Level 2 (Fact.)</th>
<th>AGREE-Level 3 (Rev.)</th>
<th>AGREE-Level 4 (Trans.)</th>
<th>AGREE-Level 5 (Med.)</th>
<th>AGREE-Level 6 (Caus.)</th>
<th>AGREE-Level 7 (Perf.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[kójé] (violation in root)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>[dzóbó-ndé] (violation in Factitive)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>[úm-ilé] (violation in Reversive)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>[óg-iré] (violation in Transitive)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>[tóm-íjé] (violation in Mediopassive)</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>[kéré-mó] (violation in Causative)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>[bód-i] (violation in Perfective)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

The domain-indexation model behaves similarly to the morpheme-indexation model just discussed: when coupled with a stochastic grammar framework, it can provide an exact match to the Tommo So data pattern. Moreover, unlike morpheme indexation, domain indexation at least does cover the central generalization that application frequency descends going outward from the stem. For instance, it can derive patterns that descend in a straight line, or that asymptote at values other than one or zero (e.g., starting or ending with a level)

29 This is true under the standard assumption that negative weights are not allowed; i.e. we do not want constraints to reward violations.

30 Specifically, we can always set the weights to as to match the data perfectly. The rate of harmony in Level 1 (Perfective) is determined solely by the ranking or weighting of IDENT vs. AGREE-Level 1; this can be matched by choosing the appropriate ranking probability or weight. The rate of harmony in Level 2 (Causative) will be (by hypothesis) the same as or higher than that in Level 1; this can be matched by selecting a suitable weight or ranking value for AGREE-Level 2, creating an additional penalty on the non-harmonized candidate. Proceeding inductively through the hierarchy, we can obtain an exact match for every level.
sequence at .5); for graphical demonstrations see Supplemental Materials. In contrast, our scalar model is tightly constrained by the mathematical generalizations given in §7.6; it generates only symmetrical descending curves that asymptote at one and zero.

9.3 Summary and evaluation of all models

In this article, we have considered multiple models to account for the Tommo So vowel harmony data. By far the most successful were those based on scalar constraints and Harmonic Grammar. Both the maxent and NHG versions achieved a close fit to the data. Poor fits, on the other hand, were obtained under a number of different approaches. The inverted-exponential model (§6) was one such case, whether one includes an intercept term or not (fn. 28). Our own Harmonic Grammar models also performed poorly if one attempts to simplify them by removing the possibility of language-specific weights for either Faithfulness or Markedness (fn. 28). Lastly, both the morpheme-indexation approach (§9.1) and domain indexation with stringency (§9.2) fit the data perfectly, but in a sense they are uninteresting because they can fit either any data pattern whatsoever (morpheme indexation) or any descending pattern (domain indexation). The chart below summarizes, giving error values for each model.

(49) Summary of models

<table>
<thead>
<tr>
<th>Model</th>
<th>Total error</th>
<th>Low error</th>
<th>Back error</th>
<th>ATR error</th>
</tr>
</thead>
<tbody>
<tr>
<td>core model in maxent</td>
<td>§7.5</td>
<td>0.012</td>
<td>0.012</td>
<td>0.022</td>
</tr>
<tr>
<td>core model in NHG</td>
<td>§7.7</td>
<td>0.009</td>
<td>0.005</td>
<td>0.021</td>
</tr>
<tr>
<td>Stochastic OT with exploded constraints</td>
<td>fn. 27</td>
<td>0.009</td>
<td>0.005</td>
<td>0.021</td>
</tr>
<tr>
<td>classic inverted exponentials</td>
<td>§6</td>
<td>0.181</td>
<td>0.249</td>
<td>0.134</td>
</tr>
<tr>
<td>inverted exponentials plus intercept</td>
<td>fn. 28</td>
<td>0.172</td>
<td>0.223</td>
<td>0.134</td>
</tr>
<tr>
<td>core model, fixed Markedness</td>
<td>fn. 28</td>
<td>0.076</td>
<td>0.068</td>
<td>0.042</td>
</tr>
<tr>
<td>core model, fixed Faithfulness</td>
<td>fn. 28</td>
<td>0.090</td>
<td>0.123</td>
<td>0.055</td>
</tr>
<tr>
<td>morpheme indexation</td>
<td>§9.1</td>
<td>zero error</td>
<td>would fit any data pattern</td>
<td></td>
</tr>
<tr>
<td>domain indexation</td>
<td>§9.2</td>
<td>zero error</td>
<td>would fit any non-ascending data pattern</td>
<td></td>
</tr>
</tbody>
</table>

10. Further issues

10.1 What kind of variation?

Variation in phonology takes several forms. For instance, it can be either interspeaker or intraspeaker variation. In the former case, every speaker always produces the same outputs, and the appearance of variation in the data as a whole is the merely the result of mixing in data from different speakers. We think the variation we describe here is intraspeaker variation; there is no independent evidence of dialect differences among the language consultants, and the collected data include numerous instances in which the same speaker said the same word on different occasions with different harmony; see e.g. (10), (11), and (20).
Intraspeaker variation involves either types or tokens. In type variation, words or stems of similar phonological makeup behave differently on an idiosyncratic, lexically-determined basis, but each one is always pronounced the same. In token variation, all words or roots that are phonologically eligible for variation vary from one speaking occasion to the next. In light of our observations, Tommo So cannot be a case of pure type variation, but it is possible that some words are lexically listed (or diacritically marked) to always have harmony or non-harmony. Such forms are difficult to detect in our data and the results of the following statistical inquiry are inconclusive.

Test 1. One way of testing for the presence of listed forms is to check whether there are more all-harmony and no-harmony words among the population of varying forms than could arise by chance. We tested this with a Monte Carlo simulation (Mooney 1997). In our corpus there are 155 types that have a combination of root + suffix with a harmony rate above zero and below one, and with more than one attested token; these are the types in which token variation can, in principle, be detected. The total number of tokens of these types is 723. To execute one single Monte Carlo run on one single token, we flip a simulated biased coin whose probability of heads is equal to the theoretical probability of harmony, taken from (32a). Recording this outcome, we repeat the process for all 723 tokens. Examining the batch of pseudo-data thus created, we count the number of types whose tokens come out all-harmony, and the number of types that come out no-harmony. The whole process is repeated 100,000 times, yielding an approximate probability distribution for the expected number of all-harmony and no-harmony types. Lastly, we examine where the real counts (66 no-harmony, 48 always-harmony) fall in this distribution. The total fraction of Monte Carlo trials that have 66 or more no-harmony forms, or 48 or more always-harmony forms, divided by 100,000, yields a p-value, telling us the probability that these numbers could arise by chance. The results are highly significant: \(p < 0.00001 \) in both cases. In other words, our test shows that there are far more all-harmony and no-harmony cases then could ever arise by chance.

In principle, this could be taken as evidence that there is substantial type variation, in the form of root + suffix combinations that are memorized in some way. However, the picture is not so clear. Our experience in elicitation suggests that consultants are vulnerable to self-priming: if they give one possible free-variation outcome then the odds are good that they will give the same one when asked a few minutes later. Under the self-priming effect, we might expect a statistically significant effect in the test just given, even if Tommo So words are not listed with their harmony outcomes.

Moreover, if there are type effects in our data, it is strikingly hard to locate the individual words that are responsible. This is what we found in Test 2.

Test 2. The goal is to find the words that have a great deal or very little harmony in the context of the overall probability predicted for them by our analysis. To do this, we consult the cumulative binomial distribution for (at least/fewer than) \(m \) harmony outcomes when there are \(n \)

\[\binom{n}{m} p^m (1-p)^{n-m} \]

\(^{31}\) We would like to thank Joni Ricks and her colleagues at the Statistical Consulting Group of the UCLA Institute for Digital Research and Education for their guidance in preparing and interpreting the statistical tests reported here. The materials used for all the tests (including the program code for the Monte Carlo simulation) are posted at the article web site.
tokens (Mosteller, Rourke, and Thomas 1970:138-145). In fact, very few words in the data (14) pass this test, even with a liberal 5% significance criterion. One such example is /dùl-ìjé/ ‘turn around-MEDIOPASSIVE’ = ‘return’, which appears 8 times in the corpus as [dùl-ìjó] and never as [dùl-ìjé]. The probability of Backness Harmony in the Mediopassive is .44; hence the probability of unanimity for [dùl-ìjó] is \(= \frac{.44^8}{8!} \), or .0014; this is unlikely to be accidental.

Curiously, all nine words that pass this test at the .01 significance level (such as [dùl-ìjó]) are words with unanimous harmony. To explain this, we suggest that these words have been restructured and are treated synchronically as roots (which in Tommo So virtually always undergo harmony; §4.1). A possible English analogue (Kiparsky 1977:222) is the exceptional compound high school ['hái skul], treated as a single stem and thus eligible for the raising process at \(\rightarrow A1 / _ _ [___voice] \); the normal outcome is seen in pie school ['pái skul].

Obviously, more data would be needed to make further progress on the type/token question. For now, we think the best conjecture is that type variation may play a quite small role: we cannot prove that the overall disparities (Test 1) are not due merely to self-priming, and the very few cases where the type variation is clearly localizable to particular words (Test 2) share the all-harmony property, suggesting that the only mechanism at play is the treatment of a small number of historically polymorphemic words as monomorphemic.

10.2 Opacity with Hiatus Resolution

ATR Harmony in Tommo So is opaque: it is in a counterbleeding relationship with Hiatus Resolution. In roots with an initial high vowel and a final mid vowel, the only possible ATR trigger is the final vowel, since only mid vowels may trigger ATR Harmony (§4.4). When a vowel-initial suffix is added to such a root, this final vowel deletes, yet the suffix vowel agrees in [ATR] as though it were present:

\[
\begin{align*}
\text{a. Deleted [+ATR] root vowel: suffix is [+ATR]} \\
/dídé-ilé/ & \rightarrow [díd-ílé] \quad \text{‘prop.up-REVERSIVE’ = ‘remove prop’} \\
/kúmbó-ìrè/ & \rightarrow [kúmb-ìró] \quad \text{‘fist-TRANSITIVE’ = ‘put in (sb’s) fist’} \\
/wigílé-ìjè/ & \rightarrow [wigíl-ìjé] \quad \text{‘swing-MEDIOPASSIVE’ = ‘swing’}
\end{align*}
\]

\[
\begin{align*}
\text{b. Deleted [-ATR] root vowel: suffix is [-ATR]} \\
/dìŋé-ilé/ & \rightarrow [dìŋ-ílé] \quad \text{‘tie-REVERSIVE’ = ‘untie’} \\
/túŋó-ìrè/ & \rightarrow [túŋ-ìrò] \quad \text{‘kneel-TRANSITIVE’ = ‘make kneel’} \\
/tímbé-ìjè/ & \rightarrow [tímb-ìjé] \quad \text{‘stack-MEDIOPASSIVE’ = ‘become stacked’}
\end{align*}
\]

32 It is in fact extremely liberal because we are “fishing”; looking for the same outcome over and over again without adjusting the significance criterion.
As these examples show, the suffix’s [ATR] value is determined by a vowel no longer present on the surface. In a rule-based analysis, this result would be obtained by ordering ATR Harmony before Hiatus Resolution.

In constraint-based phonology, there are several theories that would permit the derivation of these opaque cases. Employing autosegmental theory, we could let vowel deletion strand a floating Root node (Clements 1985). Provided that this node is visible to the AGREE constraints, opacity would result. Opacity could also be obtained by framing our analysis within various standard approaches within OT: Sympathy Theory (McCarthy 1999), Turbidity Theory (Goldrick 1999), Stratal OT (Kiparsky 2000, 2008; Bermúdez-Otero 1999), Candidate Chain Theory (McCarthy 2007). Since the analysis of opacity is tangential to our main concerns, we will not explore the matter further.

11. Conclusion

We list what we take to be the main results of this work.

First, Tommo So vowel harmony is a clear case of the Kiparskian generalization that phonological processes “turn off” as they extend into the outer reaches of morphology. With a rich set of ordered affixes, Tommo So forms a test case for formal theories that seek to account for this phenomenon.

Second, Guy’s inverted-exponential theory, though simple and principled, does not provide a good fit to the Tommo So data. Other models of phonology-morphology interactions, namely morpheme-indexed constraints and domain-indexed constraints with a stringency hierarchy, are able to provide an essentially perfect match, but this result is uninformative because these models are unrestrictive.

Third, Harmonic Grammars (both maxent and NHG), augmented to include scalar constraints, provide a good fit to our data. Moreover, these theories are restrictive; they inherently generate sigmoid probability functions and can only be used to model curves that fit this family.

This said, we judge that our work remains speculative until a greater number of “petering out” systems have been located and documented with enough data to do quantitative analysis. We hope the method described here will facilitate the task of taking on new cases.
References

Albright, Adam (2012). Additive markedness interactions in phonology. Ms., Department of Linguistics and Philosophy, MIT.

Fruehwald, Josef T. (2012). Redevelopment of a morphological class. *University of Pennsylvania Working Papers in Linguistics* Vol. 18: Iss. 1, Article 10. Available at: http://repository.upenn.edu/pwpl/vol18/iss1/10

Kirchner, Robert (1993). Turkish vowel harmony and disharmony: an optimality theoretic account. Paper presented at the Rutgers Optimality Workshop 1, Rutgers University, New Brunswick, NJ.

Zuraw, Kie (2012). Quantitative patterns of constraint interaction. Talk given at WCCFL 30, University of California, Santa Cruz.