How applicable is the “unified model” of AGN, and what is the physical nature of the obscuring torus?

Urry & Padovani, 1995
Evidence for a (toroidal) distribution of dust

- broad IR bump in the nuclear SEDs & cutoff

![Graph showing evidence for a (toroidal) distribution of dust](Elvis et al. 1994)
Evidence for a (toroidal) distribution of dust

- broad IR bump in the nuclear SEDs & cutoff
- broad emission lines in polarised light
Evidence for a (toroidal) distribution of dust

- broad IR bump in the nuclear SEDs & cutoff
- broad emission lines in polarised light
- ratio of type 2 to type 1 implies high covering factor
Evidence for a (toroidal) distribution of dust

- broad IR bump in the nuclear SEDs & cutoff
- broad emission lines in polarised light
- ratio of type 2 to type 1 implies high covering factor
- ionisation cones

Bock et al. 2000
Macchetto et al. 1994
Evidence for a (toroidal) distribution of dust

- broad IR bump in the nuclear SEDs & cutoff
- broad emission lines in polarised light
- ratio of type 2 to type 1 implies high covering factor
- ionisation cones
- MIDI directly resolves dust tori for the first time

Evidence for a (toroidal) distribution of dust

Tristram+2014
Evidence for a (toroidal) distribution of dust

- broad IR bump in the nuclear SEDs & cutoff
- broad emission lines in polarised light
- ratio of type 2 to type 1 implies high covering factor
- ionisation cones
- MIDI directly resolves dust tori for the first time

 e.g. true type 2, changing look AGN
 do all studies come to the same answer?
 collimation on which scale?
 geometrically thick or outflow?
Models of AGN tori

Geometrical torus models

- smooth and clumpy, puffed-up structures, disc winds, warped discs

Stalevski+ 2016

large degeneracies, dynamically unstable

Netzer+ 2015
Models of AGN tori

Physical torus models

- warped discs

difficult to explain the obscured fraction

Sanders+, 1989

Jud+, 2016/17
Models of AGN tori

Physical torus models

- magnetised clouds
- magneto-centrifugal winds

(Too) strong magnetic fields necessary
Unclear whether dust clumps can be lifted

Emmering+, 1992
Models of AGN tori

Physical torus models

- nuclear starbursts

problems at small scales, partly require extreme conditions

Schartmann+, 2009

Wada+, 2009

Hueyotl-Zahuantitla, 2013
Models of AGN tori

Physical torus models

- UV and/or IR radiation pressure

 promising, various mechanisms proposed, converged to same results (?)

Wada, 2012

Chan & Krolik, 2016

Dorodnitsyn+, 2015
Models of AGN tori

Physical torus models

- warped discs
- magnetised clouds
- magneto-centrifugal winds
- nuclear starbursts
- UV and/or IR radiation pressure

• difficult to explain the obscured fraction
• (too) strong magnetic fields necessary
• unclear whether dust clumps can be lifted
• problems at small scales
• promising, various mechanisms proposed, converged to same results (?)
What is the physical nature of the central obscuring structure (i.e. the "torus")?

- Gas/dust Outflow <10pc: 31.6%
- Gas/dust Inflow <10pc: 36.7%
- There is No Torus: 3.8%
- Circumnuclear Star Formation: 3.8%
- Other: 24.1%

thanks to Mackenzie!
What is the physical nature of the central obscuring structure (i.e. the "torus")?

- Obscuration from the Broad Line Region
- Gas/Dust Clumpy Structure - Not a Torus
- Varies Among AGN Types
- Depends on the Luminosity
- Inflow and Circumnuclear SF
- Inflow, Outflow, and Circumnuclear SF
- Inflow and Outflow
- Not Enough Evidence...Yet

Percent
outflow
torus
gas
inflow
Polar emission & outflows & obscuration

- What are the conclusions to draw from the detection of polar emission?
 - Is it an indication that the torus should be replaced by an outflow?
 - Or is this just a second component in addition to a toroidal structure (e.g. the inner part of the dusty NLR)?
- Where is the mass located?
- How can we observationally distinguish?
- How to sustain the obscuring structure over a duty cycle?

Tristram+ 2014

Wada+ 2012

“mass”

“light”
Obscuration: near or far?

- Where is the bulk of the obscuration happening? On BLR scale, pc-scale as seen by MIDI, on a few 10–100 pc scales (as in SB models or due to gas/dust lanes) or even on galactic scales?
- Can this explain the luminosity and redshift dependence of the covering factors?

Prieto+ 2015 filaments, ~100 pc
NGC 1386 clumpy torus, ~1 pc
Stalevski+, 2016

BLR, < r_{sub}

Risaliti+ 2011
Nature of the torus – clues from simulations

• large no. of clumpy torus models
• hydro models: quite large progress in the last years; radiation pressure on dust: IR / UV, various mechanisms have been proposed; significant contribution on large scales due to SB in some sources
• In hydrodynamics models of outflows: is it the outflowing gas that provides most of the obscuration? Or back flowing gas stirring random motions?
• What have we learned from the models? Do we converge?
Wish lists / TODO lists

- Modellers: Proposals for observations to distinguish between models?
- Observers: Specific process / physics that should be modelled / diagnostic plots?

Any other questions / points for discussion?
Your poll will show here

1. Install the app from pollev.com/app

2. Make sure you are in Slide Show mode

Still not working? Get help at pollev.com/app/help
or
Open poll in your web browser
Your poll will show here

1
Install the app from pollev.com/app

2
Make sure you are in Slide Show mode

Still not working? Get help at pollev.com/app/help

or
Open poll in your web browser
Do you think *obscuration* is done by...

- inflow
- outflow
- inflow and outflow
- puffed-up dusty structure
- circum-nuclear star formation
- all of the above
- none of the above
If polar emission is seen, where does the dust come from?

- in-situ formation in an outflow
- acceleration from equatorial region
- entrainment from a puffed-up structure
- it was always there