Impact of flow regulation on near-channel floodplain sedimentation

C.E. Renshaw, K. Abengoza, F.J. Magilligan, W.B. Dade, J.D. Landis

Department of Earth Sciences, Dartmouth College, Hanover, NH 03755, USA
Department of Geography, Dartmouth College, Hanover, NH 03755, USA

ARTICLE INFO
Article history:
Received 8 August 2011
Received in revised form 19 July 2012
Accepted 8 March 2013
Available online xxxx

Keywords:
Floodplains
Sedimentation
Flow regulation
Radionuclides

ABSTRACT
Rates and the spatial extent of near-channel floodplain sedimentation on regulated and unregulated reaches in two upland rivers in central Vermont, U.S.A. are measured using the short-lived fallout radionuclide 210Pb. We find consistent profiles of 210Pb inventories across all sites; inventories are low immediately next to the channel, increase to a peak value as the inundation frequency decreases and then asymptotically diminish with distance from the channel to the equilibrium inventory associated with atmospheric deposition alone. We infer from our data that flow regulation has impacted sediment deposition to floodplains below the dam; total sediment deposition is less and it is constrained to a narrower band immediately along the active channel. Flow regulation does not appear, however, to impact the general form of the 210Pb inventory profile, suggesting a uniformity of process across regulated and unregulated floodplains.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

We use short-lived fallout radionuclides to compare the rates and spatial extent of floodplain sedimentation between regulated and unregulated reaches in two upland rivers in central Vermont, U.S.A. The White River is the longest unregulated river in New England while flow in the West River has been regulated by two flood-control dams since the early 1960s. Short-lived fallout radionuclides have been increasingly used to quantify decadal-scale floodplain sedimentation rates across a range of climatic environments (e.g., Humphries et al., 2010; Saint-Laurent et al., 2010). This study thus represents an extension of these important, earlier efforts to the specific question of the impact of flow regulation on floodplain sedimentation. We use the short-lived fallout radionuclide 210Pb because its half-life (22.3 years) is similar to the timescale over which flow has been regulated on the West River.

A focus on floodplain dynamics is timely and pressing. More than 40% of the total organic carbon transported from the land to the oceans is in particular form via rivers (Ludwig et al., 1996) and as much as half of the annual sediment load of a river is deposited on its floodplain (Lambert and Walling, 1987; Mertes, 1994; Walling and Owens, 2003; Bourgoin et al., 2007; Day et al., 2008). Sediment storage on floodplains thus has significant implications for global nutrient cycling (Walling and Fang, 2003) and for local transport and storage of sediment-associated nutrients and contaminants (Walling et al., 2003). Floodplain sedimentation also directly impacts the productivity and floristic assemblage of riparian ecosystems (Borinette et al., 1998; Steiger et al., 2005; Walls et al., 2005; Lowe et al., 2010) which are among the most diverse and productive ecosystems on Earth (Whited et al., 2007). For example, Cavalcanti and Lockaby (2005) found that root productivity declined sharply with floodplain sedimentation rates as low as 3 mm a−1. Floodplain sedimentation also serves as an important mechanism of recurring ecological disruption which can directly enhance ecological diversity (Grimm, 1973; Connell, 1978).

While it has been estimated that flow regulation by dams has significantly reduced the flux of sediment to the world’s oceans (Walling and Fang, 2003), the extent to which flow regulation impacts sediment flux at reach scales (e.g. floodplain sedimentation) has not been quantified. Sediment impoundment behind dams results in an imbalance between sediment supply and transport capacity downstream of dams, which has been shown to lead to channel incision (Andrews, 1986; Vericat and Batalla, 2005; Surian and Cisotto, 2007) and narrowing of the bankfull channel width (Andrews, 1986; Friedman et al., 1998; Allred and Schmidt, 1999; Surian, 1999; Gaemuan et al., 2005; Grams et al., 2007). Loss of recurring inundation and deposition of fresh sediment on a floodplain owing to river regulation results in subsequent vegetation and the development of new, lower terraces on a floodplain that can further reduce channel width (Petts, 1984; Grams and Schmidt, 2002; Magilligan and Nislow, 2005; Curtis et al., 2010). Evacuation of fine sediment associated with channel incision may also lead to sandbar erosion (Grams et al., 2007) and decreased embeddedness (Salant et al., 2006). Collectively, these effects suggest significant, regulation-induced changes to overbank sedimentation and the associated rates and extent of the exchange of nutrients between a channel and its floodplain (Thoms, 2003). As attempts to re-establish the ecological connectivity (Ward, 1998) of upland river floodplains in regulated systems gain popularity (Debano and Schmidt, 1990), there is a growing need for a more thorough understanding of the natural functioning of upland riparian ecosystems, and the sediment and nutrient dynamics in these settings (Henry and Amoros, 1995; Stanford et al., 1996; Ward et al., 2001).
The overall goal of this research is to provide a greater understanding of the processes governing the near-channel spatial variation in floodplain sedimentation. We develop a field-tested conceptual model developed from 210Pb inventories and sediment deposition that links inundation frequency to the spatial pattern and rate of floodplain sedimentation. Moreover, we apply this model to both regulated and unregulated stream systems to document the effect of flow regulation on riverine-floodplain connectivity.

2. Floodplain inventories

Along any given reach, Pizzuto (1987) hypothesized that the rate of overbank sediment deposition decays exponentially with increasing distance from the channel due to the dispersion of turbulent energy across the floodplain. Initial attempts to rigorously test the validity of this hypothesis were limited by the lack of quantitative sediment deposition data with sufficient temporal resolution. However, with the advent of radionuclide-based techniques for quantifying sedimentation rates (He and Walling, 1996; Walling and He, 1997), the number and quality of floodplain sedimentation-rate measurements have increased dramatically over the last decade. Results from radionuclide-based measurements of the spatial variation in lowland floodplain sedimentation have generally found the proposed decay in deposition with increasing distance from the channel, although the rate of decay and the specific mechanisms controlling this decay remain uncertain (Asselman and Middelkoop, 1995; Torquand and Bridge, 2002; Nicholas and Mitchell, 2003; Day et al., 2008; Pizzuto et al., 2008).

Our work extends these earlier studies by explicitly investigating the impact of flow regulation on the pattern of floodplain sedimentation. To do this, we use the fallout radionuclide 210Pb to estimate floodplain sedimentation rates. 210Pb is one of several short-lived intermediates in the 238U decay series that can be written in abridged form as

\[
{^{238}U} \rightarrow ^{226}Ra \rightarrow ^{222}Rn \rightarrow ^{210}Pb \rightarrow ^{206}Pb.
\]

238U has a long half-life (t1/2 = 4.5 billion years), and as a consequence, its decay acts as a pseudocontinuous source of 226Ra. Thus, in a closed system all the daughters of 238U decay will be in secular equilibrium, defined as each daughter element having the same activity, \(N \), where \(N \) is the number of atoms present and \(\lambda \) is their decay constant.

In near surface sediments and soils, gaseous 222Rn (t1/2 = 3.8 days) partially diffuses to the atmosphere where it subsequently decays to 210Pb and returns to the surface as atmospheric fallout, primarily by wet deposition (Appleby and Oldfield, 1992). While there is significant variation in 210Pb deposition rates over short timescales, mean annual deposition at a given location is relatively constant from year to year (Appleby, 2008). 210Pb is highly surface reactive and quickly sorbs onto particles (Kaste et al., 2003). Thus, in near-surface soils and sediments, atmospheric deposition of 210Pb results in an “excess” of 210Pb (210Pbex) relative to the levels supported by the direct decay of 222Rn. As surface sediments are eroded into a river, channel sediments become enriched in 210Pbex. If these channel sediments are subsequently deposited into a floodplain, the floodplain sediments become enriched with 210Pbex. As the rate of floodplain sedimentation decays with increasing distance from the channel, so too should the enrichment of 210Pbex inventories in floodplain sediment.

If the uniform atmospheric deposition rate \(D \) is constant and the vertical accretion caused by overbank deposition decreases exponentially with increasing distance from the channel edge, then the trend toward decreased 210Pbex inventories \(N(x,t) \) with greater distance from the edge of the channel can be quantified as

\[
\frac{\partial N(x,t)}{\partial t} = D + \delta_n n_1 \rho_1 \exp \left(-\frac{x}{x_0}\right) - \lambda N(t)
\]

where \(\delta_n \) is the vertical accretion rate at the channel edge, \(n_1 \) the isotopic activity of freshly-deposited overbank sediment having a bulk density \(\rho_1 \) and \(x_0 \) is the characteristic distance over which overbank deposition decays away from the channel. We neglect any spatial variation in the initial activity of overbank sediment.

Defining the sediment radionuclide loading rate as

\[
\alpha_n = \delta_n n_1 \rho_1
\]

the total inventory can be written

\[
N(t,x) = \int_0^t [D + \alpha_n \exp \left(-\frac{x}{x_0}\right) - \lambda N] \, dt
\]

Integrating Eq. (3), the steady state \((t \rightarrow \infty)\) 210Pbex inventory at any distance \(x \) from the edge of the channel is

\[
N(x) = \frac{D}{\lambda} \left[1 + \frac{\alpha_n}{D} \exp \left(-\frac{x}{x_0}\right)\right].
\]

Implicit in Eq. (4) is the assumption that the channel does not migrate horizontally. This assumption is generally justified for stream systems in the Upper Connecticut River where valleys are relatively confined, channels have low sinuosities, and migration rates are limited (Magilligan et al., 2008; Black et al., 2010).

3. Site descriptions

The West and White rivers are mixed bedrock–alluvium tributaries of the Connecticut River in southern Vermont (Fig. 1); the alluvium in both cases is comprised of gravel and sand. The two watersheds have similar drainage areas and are located within 50 km of each other, so each has similar underlying geology and hydroclimatology. Both watersheds annually receive 115 cm of precipitation more or less uniformly distributed throughout the year, with about one-quarter falling as snow. The average annual temperature is ~7 °C with large seasonal fluctuations.

The mainstem of the White River is unregulated while the mainstem of the West River is regulated by two dams: Ball Mountain Dam and Townshend Dam. This study focuses on three regulated sites on the West River (Fig. 1, Table 1): two below the Ball Mountain Dam and one below Townshend Dam. As points of controlled comparison, we also consider two unregulated sites, one site above Ball Mountain Dam on the West River and one site on the unregulated White River.

3.1. West River

The West River has a watershed area of 1091 km² and a mean annual discharge of 10.9 m³ s⁻¹ at the United States Geological Survey (USGS) gage in Jamaica, VT (drainage area = 464 km²) just below Ball Mountain Dam. The U.S. Army Corps of Engineers completed construction of both the Ball Mountain and Townshend dams on the West River in 1961. Townshend Dam is located 16 km downstream from the Ball Mountain Dam, well below our River Road and Wardboro brook sites and thus imposing no backwater effects on the main-channel confluences of these locations. The reservoir behind Townshend Dam is the smaller of the two (0.04 km²) and is maintained at a relatively constant year-round stage reservoir. The larger reservoir behind Ball Mountain Dam (0.104 km²) extends 7 km above the dam to just below our Windham River site. The reservoir water depth varies seasonally from 20 m in the spring to 8 m in the summer. The operation of both dams is coordinated primarily for flood control with two weekends of controlled releases from Ball Mountain Dam each year for recreation. Regulation has significantly reduced peak flows on the West River below both dams. Although the average daily flows have been somewhat larger during the post-regulation era than before dam construction, the
magnitude of the 50-year flood just below the Ball Mountain Dam has been reduced by an order of magnitude from 1035 m3 s$^{-1}$ to 167 m3 s$^{-1}$. As a result, the contemporary 50-year flood is similar in magnitude to the pre-dam 2-year flood and during the post-regulation interval, the pre-dam 2-year flood has not occurred on the West River below the dams (Svendsen et al., 2009).

The sediment trapping efficiencies of the dams are unknown, but likely high given their persistent reservoirs and limited releases. Preliminary results from recent estimates of the volume of sediment stored behind Ball Mountain Dam based on ground penetrating radar transects indicate that sediment is being stored behind the dam at a rate similar to the average erosion rate for northern New England (Kasprak et al., 2008), consistent with the purportedly high sediment trapping efficiency of the dam.

Three regulated sites (River Road, Wardsboro Brook, and Rock River) and one unregulated (Winhall River) site upstream of both dams were selected because of the presence of large mid-channel islands. Historical aerial photographs and the presence of large trees at least several decades old growing on the islands indicate that the islands existed prior to the onset of regulation. We focus on stable mid-channel islands because they are less prone to anthropogenic disturbances. Since the onset of regulation there have not been floods of sufficient magnitude to fully inundate any of the islands and thus their near-channel floodplains only receive sediment from the nearby channel and not from flows washing over the island.

At the unregulated Winhall site, three transects were measured across an island located ~600 m below the Winhall River tributary. Two of the regulated sites are located between the Ball Mountain and Townshend dams. Two transects were measured across an island at the River Road site ~1500 m downstream of Ball Mountain Brook, the first tributary entering the West River below Ball Mountain Dam. And two transects were measured upstream of Wardsboro brook, the second tributary entering the West River downstream of Ball Mountain.

![Fig. 1. Locations of study sites and the U.S. Geological Survey gages on the White and West rivers, Vermont.](image_url)
The mean annual discharge is 34.1 m3 s$^{-1}$ with a certainty ranging from 57 to 218 g. To measure 210Pb and 226Ra activity, Canberra was packed into uniform-sized plastic containers (105 mL) with masses 2 days at 60 °C. Samples were then homogenized before being tightly stored in plastic bags for transport to the laboratory.}

The collected sediments were collected in three increments; 0–5 cm, 5–15 cm, and 15–30 cm. Deeper soil samples, up to a depth of 90 cm, were collected along each transect. Production of statistically significant impact on model results.

Annual peak discharges for the unregulated River Road site were extrapolated from the post-dam annual peak discharges observed between 1961 and 1995 at the USGS gage station below Ball Mountain Dam near Newfane, VT (USGS gage 01156000). Annual peak discharges for the regulated Rock River site were extrapolated from the post-dam annual peak discharges observed between 1940 and 2009 at the nearby USGS gage on the regulated Rock River site near Jamaica, VT (USGS gage 01155500). Final discharges for the unregulated White River site were extrapolated from the annual peak discharges recorded between 1915 and 2009 at the USGS gage on the unregulated Saxtons River near Saxtons River, VT (USGS gage 01154000). Finally, discharges for the unregulated White River were estimated using a log Pearson type III distribution.

5. Results

5.1. Inventory versus distance across floodplain

The variation in 210Pb$_{ex}$ inventories shown in Fig. 2 for the River Road site is typical of those observed at all sites. The first panel shows the 210Pb$_{ex}$ inventory as a function of the horizontal distance from the nearest water surface when the discharge is equal to the mean annual flow, shown as the shaded region in the topographic profiles in panels b) and c). The letters next to the 210Pb$_{ex}$ inventories indicate the locations of the sediment inventories along the topographic profiles.

Fig. 2 demonstrates two findings that are observed at all regulated and unregulated sites. First, there is no consistent variation in 210Pb$_{ex}$ inventory with distance from the mean annual water surface. This likely reflects the asymmetry of the topographic profiles. Consider, for example, sediment profiles C and E; both are located ca. 20 m from the mean annual water surface, yet the 210Pb$_{ex}$ inventory of profile C is more than 50% greater than that of profile E. The difference in inventories is likely due to the greater inundation frequency at site C, which is
Most likely overbank flow velocities immediately adjacent to the channel are too high to permit significant sediment deposition during high water and may even erode previously deposited sediments.

These observations suggest two modifications to the conceptual model for the variation in radionuclide inventories presented in Eq. (4). First, rather than expressing the decay in deposition as a function of distance from the channel, it may be better instead to define this decay as a function of recurrence interval for flooding. Using flooding frequency rather than distance from the channel as the independent variable represents a time-for-space, or more precisely, frequency-for-space, substitution for the independent variable controlling floodplain 210Pb$_{ex}$ inventories. Also, as noted earlier, and consistent with field observations, we assume that the channel is not migrating. Secondly, because peak 210Pb$_{ex}$ inventories do not occur at the channel edge, the decay in deposition should be expressed as a function of the offset from the location of the peak inventory rather than from the channel edge. Thus our modified model for the variation in 210Pb$_{ex}$ inventories is

$$\frac{\partial N(t,R)}{\partial t} = D + \alpha D \exp\left(-\frac{R - R_{pk}}{R_o}\right) - \lambda N(t) \frac{R - R_{pk}}{R_o} \geq 0$$

where R_{pk} is the recurrence interval for flooding of the profile having the greatest 210Pb$_{ex}$ inventory and R_o is the characteristic difference in inundation frequency over which overbank depression degrades. Integrating Eq. (5), the steady state ($t \to \infty$) total radionuclide inventory for a given recurrence interval is

$$N(R) = \frac{D}{\lambda} \left[1 + \alpha \frac{D}{\lambda} \exp\left(-\frac{R - R_{pk}}{R_o}\right)\right] \frac{R - R_{pk}}{R_o} \geq 0.$$

To facilitate the comparison of different sites, we define the dimensionless 210Pb$_{ex}$ inventory N_D and relative recurrence interval R_D as

$$N_D = \frac{N(R) - N_{eq}}{N_{eq}}, \quad R_D = \frac{R - R_{pk}}{R_o}.$$

where the peak and equilibrium atmospheric 210Pb$_{ex}$ inventories are defined as

$$N_{pk} = \frac{1}{\lambda} (D + \alpha), \quad N_{eq} = \frac{D}{\lambda}.$$

Substituting Eqs. (7–10) into Eq. (6) yields

$$N_D = \exp(-R_D) R_D \geq 0.$$

To apply this model to our 210Pb$_{ex}$ data, we first note that $N(R \to \infty) = D/\lambda = N_{eq}$. Thus at each site we approximate N_{eq} as equal to the inventory of the sediment profile having the highest recurrence interval (Table 2). The average equilibrium inventory of all sites of 6120 ± 310 Bq m$^{-2}$ (mean ± S.E.) agrees well with the inventories measured by Kaste et al. (2003) for deciduous forests in northern Vermont (6510 ± 890 Bq m$^{-2}$) and corresponds to an atmospheric deposition rate $D = 202 \pm 28$ Bq m$^{-2}$ yr$^{-1}$. Similarly, the peak inventory, N_{pk}, is approximated as equal to the inventory corresponding to R_{pk} (Table 2). Finally, we use multiparameter optimization (Press et al., 1992) to determine the value of R_o that provides the least squares best fit of Eq. (11) to the inventories along the transect for which $R \geq R_{pk}$ (Table 2).

Fig. 3 compares variation in measured inventories to that predicted by Eq. (11). Overall the fit to the model is good, demonstrating a surprising similarity in the variation in the overbank depositional profiles across regulated and unregulated sites.
Combining Eqs. (2, 9, and 10), the vertical accretion rate \(\delta_0 \) is related to the peak and equilibrium inventories as

\[
\delta_0 = \left(\frac{N_{pk} - N_{eq}}{n_p \delta} \right). \tag{12}
\]

Thus converting the measured inventories shown in Fig. 3 to vertical accretion rates requires the initial isotopic activity of the overbank sediment \(n_o \). A lower bound estimate for this activity is provided by the measured isotopic activity of fine (\(<2 \text{ mm}\)) channel bed sediment immediately upstream of the sediment profiles (Table 2). Corresponding upper bound estimates of sediment deposition rates at our sites are ca. cm yr\(^{-1}\) (Table 2). These rates are unrealistically high in that if sediments were being deposited this quickly we would expect a topographic expression of the high rates of sedimentation at \(R_{pk} \) such as a berm or levee. Additionally, we would expect a closer correspondence between the activity of the fine sediment in the channel and the activity of the near surface sediment at \(R_{pk} \). Although the activity of the channel bed and the activity of the near surface sediment at \(R_{pk} \) are highly correlated (\(r^2 = 0.98 \)), the activity of the near surface sediment at \(R_{pk} \) is consistently greater than that of the fine sediment in the channel (Table 2).

It follows that a lower bound estimate of the sedimentation rate is given by the activity of the near surface sediment at \(R_{pk} \) (Table 2). This is a lower bound estimate because the activity of near surface sediment reflects input both from overbank sedimentation and also atmospheric deposition. Corresponding lower bound estimates of sediment deposition rates at our sites are a few mm yr\(^{-1}\) (Table 2). Although low, these rates are still two orders of magnitude greater than the average denudation rate in New England (Gordon, 1979; Kasprak et al., 2008) and similar to those measured elsewhere (Magilligan, 1985; Keesstra, 2007; Pierce and King, 2008; Humphries et al., 2010; Lokas et al., 2010; Saint-Laurent et al., 2010; Wallinga et al., 2010). Within the accuracy of our estimates there is no discernable difference in sedimentation rate between our regulated and unregulated sites.

6. Discussion

6.1. Controls on depositional profile

\(^{210}\text{Pb}_{\text{ex}} \) inventories show a consistent pattern of variation across all regulated and unregulated sites. Inventories are low immediately adjacent to the channel where the overbank flows are common, but increase rapidly to a peak value before decreasing asymptotically to approach the equilibrium inventory for atmospheric deposition. Inventories in excess of the equilibrium inventory for atmospheric deposition are proportionally related to the rate of overbank sedimentation and also the activity of the deposited sediment, which appears to vary from site to site but is likely greater than the activity of in-channel sediment. Accordingly, the low inventories immediately adjacent to the channel are due to low rates of overbank sedimentation in this zone, most likely because flow velocities during floods in this region are too great to permit the settling of sediment. As flow velocities and the frequency of inundation decrease away from the channel, the rate of overbank sediment deposition increases rapidly and then peaks. In systems where the rate of overbank sediment deposition is large, the peak in deposition rate will create the commonly observed natural levees along channel banks (e.g., Pizzuto et al., 2008). That natural levees are not apparent at our sites is likely due to their low sediment deposition rates. Beyond the region of greatest sediment deposition, the rate of sediment deposition apparently decreases exponentially with decreasing inundation frequency. Although this general pattern of variation in sediment deposition is present at all sites, both the location of the peak in sediment deposition, \(R_{pk} \), and the characteristic scale over which sediment deposition decreases with decreasing inundation frequency, \(R_{\infty} \), vary between sites. However, the variation in these parameters is not systematic with degree of flow regulation.

6.2. Impact of regulation

While the similarity in sediment deposition profiles between regulated and unregulated reaches shown by Fig. 3 indicates a similarity in depositional processes across these sites, it does not imply that regulation has not impacted floodplain sedimentation. Consider, for example, the floodplain at the Wardsboro site (Fig. 1). If \(R_{pk} \), \(R_{\infty} \), and \(\delta_0 \) each remained unchanged after the onset of regulation, net sedimentation to the floodplain at this site has decreased post regulation. This pattern is shown in Fig. 4 which compares sediment deposition rates before and after regulation. Here sediment deposition is normalized by the peak sediment deposition rate \(\delta_0 \). The difference in profiles is due to the reduction in frequency of flood events with the onset of regulation. For example, the 2-year flood at this site decreased 50%...
from 238 m$^{-3}$ s$^{-1}$ to 144 m$^{-3}$ s$^{-1}$. The decrease in size of larger flood events was even greater. For example, the 50-year flood event decreased more than 80% from 1200 m3 s$^{-1}$ to 200 m3 s$^{-1}$. Because the form of the deposition profile depends on the frequency of inundation rather than distance from the channel, the reduction in magnitude of the high flow events also reduced the spatial extent of the deposition (Fig. 4). Thus even if the rate of peak deposition remained constant, total deposition on the floodplain decreases by ca. 20% with the onset of regulation due to the decreased frequency of inundation.

7. Conclusions

Detailed mapping of overbank deposits from individual events (Middelkoop and Asselman, 1998) as well as detailed models of overbank hydraulics and sediment transport and deposition (Nicholas and Walling, 1998; Nicholas and Mitchell, 2003) have highlighted the important role of local-scale topographic features such as levees and abandoned channels at the Wardsboro site before (thin solid line) and after (dashed line) the onset of flow regulation. Deposition rates are normalized by the peak deposition rate. Bold line represents the topographic profile.

Fig. 4. Comparison of depositional profiles at the Wardsboro site before (thin solid line) and after (dashed line) the onset of flow regulation. Deposition rates are normalized by the peak deposition rate. Bold line represents the topographic profile.

Acknowledgments

This work was partially supported by the U.S. National Science Foundation (BCS-0724348) and in part with support from The Nature Conservancy (Connecticut River Research Partnership Agreement).

References

