Eco-Industrial Parks

An eco-industrial park involves a network of firms and organizations, working together to improve their environmental and economic performance. Some planners and researchers of EIPs have used the team “industrial ecosystem” to describe the type of symbiotic relationships that develop amongst participating firms.

According to Indigo’s EPA research project, eco-industrial parks are defined as:

“An eco-industrial park is a community of manufacturing and service businesses seeking enhanced environmental and economic performance through collaboration in managing environmental and resource issues, including energy, water, and materials. By working together, the community of businesses seeks a collective benefit that is greater than the sum of the individual benefits each company would realize if it optimized its individual performance only.

The goal of an EIP is to improve the economic performance of the participating companies while minimizing their environmental impact.”

Town of Kalundborg in Denmark – A historical first and the prototypical example
Results at Kalundborg:

Water:
- Asnaes Power Station has lowered its water consumption by 60%
- Withdrawals of water from lake Tisse have decreased by 50%

Fly ash from Asnaes Power Station:
- 30,000 tonnes per year are recovered, going to cement factories
- Nickel and Vanadium reclaimed from this ash

Desulfurization at Asnaes Power Station:
- $\text{SO}_2 \rightarrow \text{CaSO}_4 \rightarrow 100,000$ tonnes of gypsum per year
- Also ammonium-thio-sulfate as by-product, going in production of 20,000 tonnes of liquid fertilizer
 (\approx annual Danish consumption of liquid fertilizer)

Yeast slurry from Novo Nordisk:
- Yields 70% of soy protein for pig farming \rightarrow 800,000 pigs per year

Steam & Heat from various partners, esp. Asnaes Power Station:
- 30% improvement in energy utilization across the park
- Meets 15% of Statoil Refinery's needs
- 4,500 households receive district heat
 (done away with 3,500 small oil-fired burners)
- Makes possible aquaculture \rightarrow 200 tonnes of trout and salmon annually

Solid waste:
- 130,000 tonnes of combustible waste incinerated per year
 capture of landfill biogas \rightarrow electricity sold to industrial partners

Flows of resources in the eco-industrial system at Kalundborg, Denmark

(brief mention on page 299 of Mihelcic & Zimmerman, 2010)
A simple but effective arrangement in the so-called Houston Ship Canal are

Flow resources in the integrated biosystem of Montford Boys' Town in Suva, Fiji
Intervale Food Center in Burlington, Vermont (formerly Riverside Eco-Park)

The Intervale Food Center is a sustainable agricultural-based project emerging from discussions between an ad hoc group of citizens and city officials who recognized the potential of an eco-park as a model of sustainable development. This eco-park has been conceived as a partnership of the public, private, and non-profit sectors. It exemplifies sustainable development through emphasis on the principles of cooperative industrial ecology – waste products from one industry become the raw materials for another.

The vision for the Intervale Food Center is the integration of sustainable agriculture with cutting-edge technology. This is accomplished with a firm commitment to the facility's relationship with the community as an employer, good neighbor, and incubator for new business. A bedrock principle of the eco-park is to be a model of environmentally sound and equitable economic development. This four-acre parcel utilizing the existing McNeil Generating Plant is being developed to improve both Burlington’s economy and quality of life.

It consists of a complex of greenhouses and buildings utilizing "waste" heat (steam), a by-product from burning wood chips (renewable bio-mass fuel technologies) at the McNeil Plant. The McNeil Plant has also taken an innovative step in renewable energy production with the biomass gasification project. The wood gasification process has the potential to generate electricity more efficiently and at a lower cost by converting wood or other organic materials into a gaseous, energy-intensive fuel source that can be used in high efficiency gas turbines.

The facility comprises 10,000 square feet of business space and 50,000 square feet of bioshelter (greenhouse) space. Ideal tenants are those who can then utilize the low-grade heat produced at the McNeil Plant to complete the energy-waste-energy cycle through a symbiotic closed loop. The eco-park currently has community gardens, citywide composting, wind power, and a Living Machine demonstration project.

The eco-park is envisioned to include a range of sustainable and restorative uses related to organic agriculture, biotechnology, aquaculture, and ‘living machine’ technology. The living machine utilizes living plants to complete the chemical conversion to turn liquid organic waste from the food industry into viable products such as fertilizer and fish food. It is now growing healthy tilapia and hydroponic plants adjacent to the building site and provides an open classroom for the community and educational institutions.

https://www.intervale.org/

Flow resources in the integrated biosystem of Intervale Burlington, Vermont
Chattanooga, Tennessee

In the 1970s and early 1980s, after much suburban growth, the downtown of Chattanooga was in decline and was plagued by a few environmental problems. In 1984, the city began to develop a community-wide vision that incorporated sustainable community concepts into city planning.

The major driving force behind the revitalization was the Vision 2000 project, which was established as a collaborative effort between residents, business, and local government. Open public forums were held throughout the mid-1980s, and goals were set.

Chattanooga, Tennessee (cont’d)

Forty specific goals were identified, one of which was reduced dependence on the personal automobile through reliance on clean public transportation (electric buses). Others fostered the development of multi-purpose facilities and affordable housing. Cleaning up the Tennessee River and developing the waterfront for recreational purposes was also on the list.

Perhaps the most visible component of the revitalization effort has been the freshwater aquarium. Standing as the cornerstone of the Riverwalk district, it has been a major tourist attraction. Its presence has been the catalyst for the construction of new residential apartments, businesses and recreational facilities.

There is no doubt that Chattanooga is a vibrant and far more pleasant city than it was twenty years ago.

Critics, however, argue that in the push for economic revitalization and environmental restoration, some social aspects have been disregarded. The effort has profited the middle class far more than the working class and minorities.
Components of EIP design

EIPs have a rich menu of design options, including site design, park infrastructure, individual facilities, and shared support services.

Natural Systems – An industrial park should fit into its natural setting in a way that minimizes environmental impacts while cutting operating costs.

Example: The Herman Miller design plant in Phoenix illustrates the use of native plant reforestation and the creation of wetlands to minimize landscape maintenance, purify storm water run-off, and provide climate protection for the building.

Example: Use of local solar and/or wind energy

Energy – More efficient use of energy is a major strategy for cutting costs and reducing burdens on the environment.

Example: Steam or heated water flowing from one plant to another (energy cascading), or to homes in the area.

Material Flows – In an eco-park, companies perceive wastes as lost opportunities that ideally are potential products to be re-used internally or marketed to someone else.

The park infrastructure may include the means for moving by-products from one plant to another, warehousing by-products for shipment to external customers, and common toxic waste processing facilities. One emerging strategy for EIP planning involves anchoring the park around resource recovery companies that are recruited to the location or started from scratch.

Example: Brewery, mushroom farming, pig raising and vegetable farming in Fiji

Water Flows – Processed water from one plant may be re-used by another (water cascading), passing through a pre-treatment plant as needed. The park infrastructure may include mains for several grades of water (depending on the needs of the companies) and provisions for collecting and using storm water run off.

Park Management and Support Services – Management supports the exchange of by-products among companies and helps them adapt to changes in the mix of companies (such as a supplier or customer moving out) through its recruitment responsibility. It may maintain links into regional by-product exchanges and a site-wide telecommunications system.

The park may also include shared support services such as a training center, cafeteria, day care center, office for purchasing common supplies, or a transportation logistics office.
Benefits of Eco-Industrial Parks

1. *Monetary benefits to companies:*
 - ↓ Production costs (purchasing unwanted by-products from others at bargain prices; selling its own by-products)
 - ↓ Energy consumption (less transportation)
 - ↓ Waste management (on-site, or even being able to sell what would otherwise be waste)
 - ↓ Costs of compliance
 - ↓ Cost of some R&D (shared with other companies)

2. *Environmental benefits:*
 - ↓ Demand on natural resources
 - ↓ Waste (in all forms: solid waste, air emissions, wastewater)
 - ↓ Chances of accidents in transportation (pipes instead of trucks)

3. *Societal benefits:*
 - Better economy → more jobs
 - Cheap heating (in both park and residential neighborhoods)
 - Cleaner air, cleaner water → better health
 - ↓ Demand on sewer system, landfill etc.