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1 Introduction

In Feller [F], volume 1, 3d ed, p. 194, exercise 10, there is formulated a version of
the local limit theorem which is applicable to the hypergeometric distribution,
which governs sampling without replacement. In the simpler case of sampling
with replacement, the classical DeMoivre-Laplace theorem is applicable. Feller’s
conditions seem too stringent for applications and are difficult to prove. It is
the purpose of this note to re-formulate and prove a suitable limit theorem with
broad applicability to sampling from a finite population which is suitably large
in comparison to the sample size.

2 Formulation, statement and proof

We begin with rational numbers 0 < p < 1 and ¢ = 1 — p. The population size
is N and the sample size is n, so that n < N and Np, Nq are both integers.
The hypergeometric distribution is
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This is expressed in terms of the usual binomial distribution by writing

P(k;n,N) = 0<Ek<n. (1)
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so that
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The DeMoivre-Laplace limit theorem applies to the first factor of P. It remains
to show that R(k;n, N) — 1 under suitable conditions. To do this, note that
1 —x < e for all x and that for small positive x we have the lower bound
1—x>e*0+49 for 0 < x < § where § = 6(¢) | 0 when € | 0. Thus
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where we have assumed that n/N — 0 in order to estimate the denominator.
Now consider k& — oo so that

k =np+ xz/npq, n —k =nq— x\/npq

Then
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We can now summarize these calculations in the following form.
Theorem 1. If N — oo,n — oo so that n?/N — 0 and zy, := (k—np)/\/npq —
x, then both numerator and denominator of (2) tend to 1 and
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in the sense that the ratio of the two sides tends to 1.

Proof. It suffices to apply the usual DeMoivre-Laplace limit theorem to the
first factor; from (3) we see that the numerator of (2) tends to 1 while the
denominator clearly tends to 1. In particular

1 <liminf R(k;n, N) < limsup R(k;n,N) <1

P(k;n,N) ~

and the result follows.



2.1 An improved result

A more general result can be obtained if instead we use the quadratic Taylor
expansion
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Using this, the denominator of (2) is written
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A similar estimate is applied to the numerator, to obtain

Theorem 2. If N — oo,n — oo so that n3/N? — 0 and (k — np)//npq — =,
then
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Proof. In this case the common factor of n?/N cancels from both the numerator
and denominator, so that we have lim R(k;n, N) = 1, from whence the result.

P(k;n,N) ~

3 Feller’s result

The above analysis excludes the case when n/N — ¢0. In this case the form of
the limit will be different, since R(k;n, N) tends to a non-trivial limit. To see
this, we apply Stirling’s formula to the denominator of (2) to obtain
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To analyse the numerator of (2), we first note that k/Np ~ ¢ + x/qt/Np;
to evaluate the first factor in the numerator we replace N by Np and t by

t+x+/qt/Np in (5) to obtain
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Similarly, the second factor is evaluated by noting that (n — k)/(N¢q) ~ t —
x+/pt/Ngq, thus replacing N by Nq and ¢ by t — x1/pt/Ngq in (5) to obtain
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It remains to take logarithms of the resulting quotient and to analyse the terms
when N — oo. Supressing some unsightly but straight-forward computations,

we obtain
ta?
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In the limiting case of ¢t = 0 this agrees with the previous result, obtained when
n/N — 0 sufficiently fast. In the general case of t0 this gives the following form
of Feller’s result.

Theorem 3. If N — oo,n — oo so that n/N — t € (0,1) and zy = (k —
np)/\/npq — x, then
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Proof. It suffices to multiply the above computation by the usual de-Moivre
Laplace result.

4 Solution by Feller’s hint

The usual de-Moivre Laplace limit theorem can be re-written as an asymptotic
formula for binomial coefficients:
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where «, 80, a + 3 =1, k = ma + y/maf. We apply this to the denominator
and twice to the numerator of (1): for the denominator we set m = N, k = Nt,
y =0,a =1 to obtain
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To analyse the numerator, we set m = Np, o = t,y = 21/q/(1 — t) to obtain
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The product of these two expressions simplifies to
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Dividing this by (8), we obtain the result:
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