Terminology for Describing the Results

When the experimental treatment **increases the probability of a good outcome:**

ABI (absolute benefit increase). The absolute arithmetic difference in rates of good outcomes between experimental and control patients in a trial, calculated as $\text{EER} - \text{CER}$.

RBI (relative benefit increase). The proportional increase in rates of good outcomes between experimental and control patients in a trial, calculated as $|\text{EER} - \text{CER}|/\text{CER}$.

NNT (number needed to treat). The number of patients who need to be treated to achieve one additional good outcome, calculated as $1/\text{ARR}$.

When the experimental treatment **reduces the probability of a bad outcome:**

ARR (absolute risk reduction). The absolute arithmetic difference in rates of bad outcomes between experimental and control participants in a trial, calculated as $\text{EER} - \text{CER}$. (This is sometimes called the risk difference.)

RRR (relative risk reduction). The proportional reduction in rates of bad outcomes between experimental and control participants in a trial, calculated as $|\text{EER} - \text{CER}|/\text{CER}$.

NNT (number needed to treat). The number of patients who need to be treated to achieve one additional favorable outcome, calculated as $1/\text{ARR}$

When the experimental treatment **increases the probability of a bad outcome:**

ARI (absolute risk increase). The absolute arithmetic difference in rates of bad outcomes between experimental and control patients in a trial, calculated as $\text{EER} - \text{CER}$.

RRI (relative risk increase). The proportional increase in rates of bad outcomes between experimental and control patients in a trial, calculated as $|\text{EER} - \text{CER}|/\text{CER}$.

NNH (number needed to harm). The number of patients, who, if they received the experimental treatment, would result in one additional patient being harmed, compared with patients who received the control treatment; calculated as $1/\text{ARR}$.