Mortality and natality data for a cohort of Belding's ground squirrel, *Citellus beldingi* (after Zammuto and Sherman 1986, Can. J. Zool. 64 602-605). Squirrels were censused once per year in mid-summer, shortly after weaning; m_x is the average number of female young just weaned by a female of age x.

<table>
<thead>
<tr>
<th>Age class x</th>
<th>Number alive N_x</th>
<th>Annual Survival S_x</th>
<th>Cumulative survival I_x</th>
<th>Expected life e_x</th>
<th>Fecundity m_x</th>
<th>Realized fecundity $l_x m_x$</th>
<th>Reproductive value V_x</th>
<th>Cohort size at SAD C_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>238</td>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Fill in the life table.

2. What proportion of squirrels live to be 2 years old?

3. Of those squirrels that live to be 1 year old, what proportion survive to the 2nd year?

4. What is the expected future lifespan of a 1 year old squirrel?

5. Calculate R_0. Write it with the correct units. If there are 100 squirrels in mid-summer this year, how many would you expect to find in mid-summer next year? How many the year after?

6. Write the correct general equation for calculating reproductive value V_x for a post-breeding model.

7. If you were managing this population of squirrels and a users group wanted to harvest as many squirrels as possible on a sustained yield basis, which age class would you recommend that they exploit? Explain.
BIO 21/51/120: EXAMPLE OF LIFE TABLE CALCULATIONS

Cohort life table for little brown bat *Myotis lucifugus* (based on annual pre-breeding censuses)

<table>
<thead>
<tr>
<th>x</th>
<th>N_x</th>
<th>S_x</th>
<th>l_x</th>
<th>e_x</th>
<th>m_x</th>
<th>l_x m_x</th>
<th>V_x</th>
<th>C_x</th>
<th>(\lambda) l_x</th>
<th>l_x m_x x</th>
<th>(v_x)</th>
<th>(v_{x+1})</th>
<th>(v_{x+2})</th>
<th>(v_{x+3})</th>
<th>(v_{x+4})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1'</td>
<td>320</td>
<td>0.4</td>
<td>1</td>
<td>0.82</td>
<td>0</td>
<td>0</td>
<td>1.1</td>
<td>0.563</td>
<td>0.968</td>
<td>0</td>
<td>0.4</td>
<td>0.42</td>
<td>0.28</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>128</td>
<td>0.7</td>
<td>0.4</td>
<td>1.05</td>
<td>1</td>
<td>0.4</td>
<td>2.75</td>
<td>0.218</td>
<td>0.375</td>
<td>0.80</td>
<td>1.05</td>
<td>0.7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>90</td>
<td>0.5</td>
<td>0.28</td>
<td>0.5</td>
<td>1.5</td>
<td>0.42</td>
<td>2.5</td>
<td>0.148</td>
<td>0.254</td>
<td>1.26</td>
<td>1.5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>45</td>
<td>0.14</td>
<td>0</td>
<td>2</td>
<td>0.28</td>
<td>2</td>
<td>0.071</td>
<td>0.123</td>
<td>1.12</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Sigma)</td>
<td></td>
<td>1.10</td>
<td>1.00</td>
<td>1.718</td>
<td>3.18</td>
<td></td>
</tr>
</tbody>
</table>

The value of \(x\) in the first row of the table is the approximate age at the time of sampling of the youngest individuals that are recognized (with a pre-breeding census, the table starts with \(x = 1\); with a post-breeding census, the table starts with \(x = 0\)).

- \(N_x\): Number in cohort surviving to age \(x\) (measured; e.g., from marked individuals).
- \(S_x\): Annual probability of survival = Probability that an individual of age \(x\) will survive to age \(x+1\).
 \[S_x = \frac{N_{x+1}}{N_x} \quad \text{eq. 1} \]
 \[0.40 = \frac{128}{320} \]
- \(l_x\): Cumulative Survivorship = Proportion of individuals in age class 0 that survive to age class \(x\). Note that \(l_0 = 1.0\) by definition.
 \[l_x = l_{x-1} \cdot S_{x-1}; \quad \text{eq. 2} \]
 \[0.4 = 1 \cdot 0.4 \quad \text{i.e., } l_1 = l_0 \cdot P_0 \]
 \[0.28 = 0.4 \cdot 0.7 \]
- \(e_x\): Expected life = Expectation of future life given survival to age \(x\).
 \[e_x = \left(\sum_{i=x+1}^{\infty} l_i \right) \cdot \frac{1}{l_x} \quad \text{eq. 3} \]
 \[1.05 = \frac{(0.28 + 0.14)}{0.4} \]
- \(m_x\): Fecundity at age \(x\) (average number of female offspring produced during the next year that survive to the time of the next census; e.g., average number of female bats produced last summer that survived to the next spring; measured in nature). Note that this is sometimes denoted as \(b_x\) in life table models. Note that we define \(m_x\) differently in a post-breeding model.
- \(l_x m_x\): Realized fecundity = \(l_x \cdot m_x\) \quad \text{eq. 4}
 \[= \text{Probability of survival to age } x \cdot \text{Fecundity given survival.} \]
 \[= \text{Female offspring in year } x \text{ per initial female of age } 1 \]
 \[0.42 = 0.28 \cdot 1.5 \text{ females } / \text{female} \]
- \(R_0\): Net reproductive rate (per capita progeny / lifetime, individuals \(\cdot\) individual\(^{-1}\) \(\cdot\) lifetime\(^{-1}\)) = Average number of offspring produced by an average newborn offspring during its entire lifetime. Also equals the reproductive value for age class 0 (\(RV_0\)).
 \[R_0 = \sum_{x=0}^{\infty} l_x m_x \quad \text{eq. 5} \]
 \[= 1.10 \]

\(G \) = Generation time (units = time step of life table; in this case, years)
\(= \frac{\sum x \cdot m_x \cdot x}{R_0} \)
\(\text{eq. 6} \)

2.89 = \frac{3.18}{1.10}.

\(r \) = Intrinsic rate of increase (individuals \(\cdot \) individual\(^{-1} \) \(\cdot \) year\(^{-1} \))
\(= \frac{\ln R_0}{G} \)
\(\text{eq. 7} \) An exact solution requires iteration with Euler’s equation.

0.033 = \ln 1.10 / 2.89

\(\lambda \) = Finite rate of increase. (pronounced lambda)
\(= e^r \)
\(\text{eq. 8} \)

1.034 = \(e^{0.033} \)

\(V_x \) = Reproductive value\(^*\)
\(= \text{Age-specific expectation of future offspring (females of age 1 / female of age } x) \)
\(= \text{Expected reproduction during the remainder of its life for an organism of age } x \)

\(= m_x + \sum_{i=x+1}^{\infty} \left(\frac{i}{l_x} \cdot m_i \right) \)
\(\text{eq. 9} \) Note that columns in the table labelled \(v_0, v_1, \) etc., show values used in the summation for each \(V_x \)

2.75 = \(1 + .28 / .4 \cdot 1.5 + .14 / .4 \cdot 2 \)
\(= 1 + 1.05 + 0.7 \)

\(\) This equation can be different in alternative life table models. Derive it as Eq 10 for a post-breeding census model.

\(C_x \) = Cohort size at stable age distribution
\(= \text{Proportion of total population of age } x \text{ at stable age distribution} \)

\(= \frac{\lambda^{-x} \cdot l_x}{\sum_{x=0}^{\infty} (\lambda^{-x} \cdot l_x)} \)
\(\text{eq. 11} \)

0.563 = \frac{1}{1.718}

0.218 = \frac{0.375}{1.718}

Given current population size, \(N_0 \), future population size at time \(t \) can be projected using \(r \) or \(\lambda \) assuming that (1) mortality and natality schedules remain the same and (2) the population is at a stable age distribution.

\(N'_t = N_0 \cdot e^{r \cdot t} \)
\(\text{eq. 12} \)

e.g., if \(N_0 = 100 \), and \(r = 0.033 \), \(N'_t = 139 \)

\(N'_t = \lambda^t \cdot N_0 \)
\(\text{eq. 13} \)

e.g., if \(N_0 = 100 \), and \(\lambda = 1.034 \), \(N'_t = 139 \)