We study outflows emerging from hot advection dominated accretion flows near a non-rotating BH using long-duration global GRMHD simulations.

We use two initial configurations of magnetic field:
- multiple loop - leading to a regular ADAF (SANE - Standard and Normal Evolution)
- single loop - leading to a Magnetically Arrested Disk (MAD)

We average the disk structure over time and azimuth and calculate the outflows. Fluid is considered leaving the system if both its radial velocity and Bernoulli number are positive.

Mass outflows for the SANE model plotted over the averaged density structure.

Mass inflow/outflow rates in the SANE simulation. The horizontal lines in the top show the net mass inflow rate for six chunks of time (black is the latest).

Mass outflows for the MAD model.

Mass inflow/outflow rates in the MAD simulation.

We conclude:
- There are no substantial outflows within $60M$ (30 grav. radii)
- The mass outflow rate becomes comparable to the net inflow rate into the BH at a radius $\sim 100M$ for SANE and $\sim 140M$ for MAD disks.
- Due to unsatisfactory convergence the obtained outflow rates should be considered upper limits and these critical radii could therefore be larger.

For all the details see arXiv:1206.1213.