A galaxy without its SMBH: implications for feedback

Francesca Civano (SAO)
M. Elvis, G. Lanzuisi, L. Blecha, A. Loeb, T. Aldcroft, M. Trichas
What happens when the SMBH is displaced or even ejected by GW from the center of its galaxy?

How does this influence the SFR, galaxy growth, mass, etc.?
• SMBH binaries are a consequence of galaxy formation

• SMBHs may be able to merge efficiently, especially in gas-rich galaxies

• SMBH mergers are a key component of SMBH-galaxy co-evolution

• Strongest gravitational wave (GW) sources in the Universe

GALAXY-GALAXY DANCE

1. Approaching
2. Interacting
3. Merging
4. Ejecting

→ GW recoil kick
Gravitational-Wave (GW) Recoil

Requires an asymmetric binary (unequal BH mass, spin, or spin orientation; Peres 1962, Bekenstein 1973)

Asymmetry causes GW beaming, which imparts a kick to the BH at the moment of merger
SMBH recoils

• Max. recoil velocity for non spinning BHs:
 \[v_{\text{kick}} < 200 \text{ km/s} \] → offset SMBHs (sub parsecs)

Kicks are small because spins are small, or because spins become aligned via a gas disk or GR precession (Bogdanović et al. 2007, Dotti et al. 2009, Kesden et al. 2010)

• Max. velocity for maximally-spinning, optimally-oriented BHs:
 up to 5000 km/s! (Campanelli+ 2007, Lousto +2011) → isolated SMBHs

For major mergers \((q \geq 0.25)\), high spins \((a = 0.9)\), & random orientations, fraction of kicks with
\[v_k > 500 \text{ km s}^{-1}: 62-70\% \]
\[v_k > 1000 \text{ km s}^{-1}: 25-36\% \]
Possible signatures of GW recoil

• Prompt EM counterparts
• Long-lived signatures:
 • Scatter/offset in BH-bulge relations
 • Effects on central stellar population
 • Offset AGN
• Enhanced tidal disruption rate \cite{Stone2010}
• Ejected stellar clusters \cite{Oleary2009}
• BHs may be ejected during a rapid growth phase
• Recoil events could produce under-massive BHs and over-massive galaxies
• May create scatter (factor of 2), offset, and/or outliers in $M_{\text{BH}} - \sigma_*$ relation

($v_k = 0$
$v_k = 0.9v_{\text{esc}}$

(Volonteri 2007, Blecha et al. 2011)
The displacement of AGN feedback after a recoil event enhances central SFR in the merger remnant.

→ The starburst phase of the merger is extended

→ 3% increase of the total stellar mass at the end of the simulation in the recoil case

Blecha et al. (2011)
Enhance SF in central region

→ A denser, more massive stellar cusp is created at the center.

→ Bluer than in the no-recoil simulation. The (blue) starburst phase may be prolonged.

→ The transition to red elliptical slightly delayed, solely due to the effect of GW recoil.

Blecha et al. (2011)
Recoiling SMBH may carry along some gas when ejected \((r_{\text{ej}} \sim G M / v_{\text{kick}}^2) \):

- **Kinematic offsets**: offset broad lines in spectra
- **Spatial offsets**: resolved offset from galactic center
Recoiling SMBH Candidates

Intensive searches in SDSS yielded a null result (Bonning et al. 2007)

1. SDSSJ092712.65+294344.0 (Komossa et al. 2008)
2. SDSS J105041.35+345631.3 (Shields et al. 2009)
3. z=0.047 SDSS galaxy (Jonker et al. 2010)
4. M87 (Batcheldor et al. 2010)
5. Quasar E1821+643 (Robinson et al. 2010)

CID-42: candidate GW recoiling SMBH with both SPECTROSCOPY and IMAGING signatures (Civano et al. 2010)
HST – 2 deg2 optical images (600 orbits)
XMM – 2 deg2 X-ray imaging (1.5 Msec)
Galex – ultraviolet imaging
Spitzer – Mid IR w/ IRAC (620 hrs)
Chandra – 1 deg2 X-ray imaging (2deg2 coming soon)
Herschel – GTO
Subaru – multiple color imaging
VLA – radio imaging (~300 hrs)
MAMBO – 1.2 mm survey
ESO-VLT – zCOSMOS LP ~ 20,000 gal.
Magellan – optical spectr. ~ 2,000 redshifts
Keck DEIMOS- optical spectra ~ 2,000 redshifts
NIR – NOAO, UH88, UKIRT …

COSMOS area ~20x area of other surveys

COMPLETE MULTI-COVERAGE on CONTIGUOUS 2deg2
How many off-nuclear SMBHs?

Number counts of off-nuclear AGNs

In COSMOS (2deg2) 0.01-10 sources

Volonteri & Madau 2008
Chandra COSMOS Survey

- 1.8 Ms exposure time (2.8 Ms just awarded)
- 1 sq deg
- 36 ACIS-I pointings
- $F_{\text{lim}} \sim 2 \times 10^{-16} \text{ cgs}$ (0.5-2 keV)
- 1761 X-ray sources (3x CDFS+CDFN)
- 2600 X-ray sources (Chandra+XMM)

Elvis et al. 2009
Puccetti et al. 2009
Civano et al. 2012
SE nucleus (20.51 mag) \Rightarrow POINT SOURCE a unobscured AGN
NW nucleus (19.67 mag) \Rightarrow EXTENDED Obscured AGN or a star cluster?
+ galaxy (\sim15 kpc, 18.6 mag)
+ tail and overall light

Tail suggests a recent major merger
3 optical spectra with high S/N:
• 1 Magellan/IMACS R=700
• 2 VLT/VIMOS R=700
+ obtained in February 2010
1 Keck/DEIMOS R=2700

Offset between broad and narrow Hβ:
Δν~1300 km/s

Line ratio of narrow system is consistent with nuclear emission
1) **GW Recoil BH: 1 AGN**

- $T=1000\text{km/s} / 2.5\text{kpc}$
- $\sim 5 \text{ Million years, ejection time}$
- Broad lines
- Narrow lines: ionized ISM
- $\Delta \nu$: normal for a GW kick
- Inverse P-Cygni: $0.1c$
- **inflow** at few tens of R_S

Ejected BH

Post BH merger System

1 SMBH

Center of the merged galaxy, now without a BH

NO X-ray emission
2) Slingshot Recoil: 2 AGNs

Pre BH merger system
2 SMBHs

Unobscured BH
- Bright X-rays
- Broad Hβ
- Moving away

Obscured BH
- Weak X-rays
- High X-ray obscuration
- Narrow Lines (Hβ and OIII)
1 or 2 active SMBHs?

HST data:
- SE: Point source
- NW: extended source ??

Optical spectra:
- 1 System of Broad lines
- 1 System with Narrow lines ??
X-ray emission: test for the presence of 1 or 2 active SMBHs (as in NGC6240)
NEW Chandra High-resolution data

- Chandra HRC 0.14”/pix
- HST/ACS F814W 0.03”/pix

~380 counts in the full band
Fx=9x10^{-14} cgs

2D spatial fitting analysis:
- 3σ upper limit on the NW source intensity
- NW source 4-5% of the total Fx<3x10^{-15} cgs

1. **SE source** emission is the strongest one; X-rays tell it is a unobscured AGN (as seen in the optical)

2. **NW source** upper limit ($L_x < 10^{42}$) could be due to
 1. Star formation
 2. Very obscured Active SMBH
 3. Quiescent SMBH → not expected in such a system
SED to study the NW source

From HST image modeling we can derive the luminosity of the optical sources separately.
Fitting using Trichas et al. 2012

BEST FIT:
Young SF galaxy

$L_{\text{IR}} = 6 \times 10^{44}$

SFR = 25 M_sun/yr

X-ray UL is consistent with the L_{IR} and the SFR measured (Ranalli et al. 2003)
Simulating the case of CID-42

For the movie look at http://chandra.harvard.edu/photo/2012/cid42/cid42 Merger_sm_web.mov
Hydrodynamic galaxy merger simulations (GADGET-3) coupled with radiative transfer (SUNRISE)

Observed

Recoiling

T=t_{obs}

Binary

T=t_{obs}

Each progenitor galaxy contains dark matter, star, and gas particles, as well as an accreting, central SMBH. GADGET-3 also contains sub-resolution models for star formation and for supernova and AGN feedback.

Simulations match as closely as possible the observed properties of CID-42 (spatial offset, v_{los} and morphology)
Recoiling Dual AGN

Simulation results

Time of merger
Comparison with Simulations

• Morpology and galaxy mass for a later stage major merger

• Epoch of the recoil: 1-6 Myr after the merger
 ✓ Epoch of the dual AGN: 50 Myr before the merger

• SFR measured for the recoiling SMBH is 21 M_{sun}, consistent with the observed one
 ✓ Dual AGN SFR is 4 times lower than the observed

• Accretion rate and Luminosity of the SMBH are consistent with the observed
 ✓ Dual AGN luminosity is much lower than the observed one
✓ The presence of recoiling SMBHs needs to be taken into account while discussing about BH/galaxy growth

✓ In CID-42: optical and X-ray data suggest the presence of 1 unobscured SMBH (still accreting) → consistent with GW recoiling scenario

✓ Nature of the NW optical source is not clear yet: the presence of a star cluster is favored instead of that of an obscured SMBH.

MORE DATA needed for CID-42: HST and/or IFU spectroscopy, VLBA and JVLA coming soon

More candidates needed to better study how this kind of sources influence the whole scenario.