Efficient Effective Media Calculations Applied to the Sparse Matrix/Canonical Grid Method in 3-D

Benjamin E. Barrowes

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

July 30, 2001
Presentation Outline

I. Introduction and Motivation

II. Effective Media
 1. Background
 2. Previous results

III. 3-D Sparse Matrix/Canonical Grid (SMCG) Method
 1. Method overview
 2. Method parameters – γ, r_d, and N_g
 3. Dyadic Green’s function expansion
 4. FFT assisted fast multiply

IV. Results

V. Conclusion
Introduction – Motivation

Mixtures and Compounds – Homogeneous substances containing discrete inclusions

- Electrically small discrete scatterers
- Random distribution
- Nontenuous, densely packed
- Examples: snow, soil, composite materials, RAMs, optical filters
- Many media not fully characterized by spherical characteristics

Note: Independent scattering assumption no longer valid
Effective Media Approach

Effective Permittivity

- Permittivity at which homogeneous medium responds to electromagnetic excitation in the same manner as a random medium
- Response of homogeneous medium dependent upon size, shape, and ε_{eff}
- Scattered coherent field from random media in a test volume is compared to those from a homogeneous volume with the same size and shape
Random Media Characterization

\[\varepsilon_{eff} \rightarrow \varepsilon_{eff}(ka, \text{shape}, \text{contrast}, f_v, \text{Arrangement}, \ldots) \]

Various limiting cases result in tractable analytical theories, but many real-world applications cannot be modeled by these limiting cases.
Monte Carlo Simulation Parameters

* Assume ϵ_{eff} is purely real

Find ϵ_{eff} which minimizes:

$$\text{error} = \sum_{j=1}^{N_a} |(\sigma_{mie,j}(\epsilon_{eff})) - (\sigma_{ran,j})|$$

where N_a is the number of angles

For this case –

$$f_v = 0.25$$

$$e = 1.0 \text{ (sphere)} \text{ and } 1.8$$

$$ka = 0.2 \text{ and }$$

$$\epsilon_p = 3.2 + 0.0i$$
Previous Results

Table 1. Results. For all cases, $ka = 0.2$ and $\varepsilon_p = 3.2 + 0.0 \dot{\varepsilon}$.

<table>
<thead>
<tr>
<th>f_v</th>
<th>$\varepsilon=1$</th>
<th>1.8</th>
<th>2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>1.0628</td>
<td>1.0650</td>
<td>1.0645</td>
</tr>
<tr>
<td>0.10</td>
<td>1.1301</td>
<td>1.1304</td>
<td>1.1345</td>
</tr>
<tr>
<td>0.15</td>
<td>1.2001</td>
<td>1.2012</td>
<td>1.2021</td>
</tr>
<tr>
<td>0.20</td>
<td>1.2717</td>
<td>1.2738</td>
<td>1.2772</td>
</tr>
<tr>
<td>0.25</td>
<td>1.3465</td>
<td>1.3502</td>
<td>1.3546</td>
</tr>
<tr>
<td>0.30</td>
<td>1.4265</td>
<td>1.4304</td>
<td>1.4347</td>
</tr>
<tr>
<td>0.35</td>
<td>1.5097</td>
<td>1.5118</td>
<td>1.5202</td>
</tr>
<tr>
<td>0.40</td>
<td>1.5961</td>
<td>1.6014</td>
<td>1.6084</td>
</tr>
</tbody>
</table>
SMCG and SMCG-Multilevel

Sparse Matrix Canonical Grid

(Tsang, et al. 1993)

- Strong interactions calculated and stored or calculated each time
- Weak interactions expanded around canonical gridpoints

Examples

- Multilayer grid for 2-D scattering from rough surfaces (Li, et al., 2000)
- Scattering from collections of dielectric cylinders (Chan and Tsang, 1995)
3-D Sparse Matrix Canonical Grid Method (SMCG)

3-D SMCG Method

1. Construct a cubic mesh in the region of interest
2. Decide on a strong interaction radius, r_d
 - Construct strong interaction matrix for particles inside r_d
 - Construct weak interaction matrix for particles outside than r_d
3. Performance increases due to structure inherent in separated interaction matrices
SMCG General Formulation

Many-Body Volume Integral Equation

\[\bar{E}(\tau) = \bar{E}_{\text{inc}}(\tau) + \frac{k^2}{\epsilon} \sum_{j=1}^{N} \int_{V_j} dV_j' \ (\epsilon(\tau_j') - \epsilon) \ \bar{G}(\tau, \tau_j') \cdot \bar{E}(\tau_j') \]

where

\(N \) = number of particles

\(V_j \) = volume of scatterer \(j \)

\(k \) = wavenumber of the background medium

\(\epsilon \) = permittivity of the background medium

\(\epsilon(\tau_j') \) = permittivity inside the \(j^{th} \) scatterer

\(\bar{G}(\tau, \tau_j') \) = background dyadic Green’s function
Scattering Solution

II Solve for $\overline{E}(\overline{r})$ by Method of Moments

- Basis Functions

$$\overline{E}(\overline{r}_j') = \sum_{\alpha=1}^{N_b} c_{j\alpha} \overline{f}_{j\alpha}(\overline{r}_j')$$

where

$$\overline{f}_{j\alpha}(\overline{r}_j') = \text{basis functions for } j^{th} \text{ particle}$$

$$c_{j\alpha} = \text{expansion amplitudes}$$

- Substituting:

$$\left[\sum_{\beta=1}^{N_b} c_{i\beta} \overline{f}_{i\beta}(\overline{r}_i') \right] = \overline{E}_{inc}(\overline{r}_i') + \frac{k_v^2}{\epsilon} \sum_{j=1}^{N} \int_{V_j'} dV_j' \left(\epsilon(\overline{r}_j') - \epsilon \right) \overline{G}(\overline{r}_i', \overline{r}_j') \cdot \left[\sum_{\alpha=1}^{N_b} c_{j\alpha} \overline{f}_{j\alpha}(\overline{r}_j') \right]$$
Scattering Solution (cont.)

Test function

\[
\int_{V_i'} dV' \overline{f}_{i\beta}(\overline{r}'_i) \cdot \left\{ \sum_{\beta=1}^{N_b} c_{i\beta} \overline{f}_{i\beta}(\overline{r}'_i) \right\} = \overline{E}_{inc}(\overline{r}'_i) + \frac{k^2}{\varepsilon} \sum_{j=1}^{N} \int_{V_j'} dV' (\varepsilon(\overline{r}'_j) - \varepsilon) \overline{G}(\overline{r}'_i, \overline{r}'_j) \cdot \left\{ \sum_{\alpha=1}^{N_b} c_{j\alpha} \overline{f}_{j\alpha}(\overline{r}'_j) \right\}
\]

Leads to:

\[c_{i\beta} = \int_{V_i'} dV' \overline{f}_{i\beta}(\overline{r}'_i) \cdot \overline{E}_{inc}(\overline{r}'_i) + c_{j\alpha} \sum_{j=1}^{N} \sum_{\alpha=1}^{N_b} z_{ij,\alpha\beta},\]

where

\[z_{ij,\alpha\beta} = B_{j\alpha} \int_{V_i'} dV' \int_{V_j'} dV' \overline{f}_{i\beta}(\overline{r}'_i) \cdot \overline{G}(\overline{r}'_i, \overline{r}'_j) \cdot \overline{f}_{j\alpha}(\overline{r}'_j),\]

with

\[B_{j\alpha} = \frac{k^2}{\varepsilon} (\varepsilon(\overline{r}'_j) - \varepsilon) \quad \text{and} \quad (B_{j\alpha} z_{ij,\alpha\beta})|_{i=j,\alpha=\beta} = C_{i\beta},\]
Full MoM Solution

Matrix Equation

\[\mathbf{Z} \cdot \mathbf{x} = \mathbf{b} \]

where

\[\mathbf{x} = [\{c_{11}, c_{12}, \ldots, c_{1N_b}\}, \ldots, \{c_{N1}, c_{N2}, \ldots, c_{NN_b}\}]^T, \]

\[\mathbf{Z}_{ij} = \begin{cases} \begin{bmatrix} z_{i,j,11} & z_{i,j,12} & \cdots & z_{i,j,1N_b} \\ z_{i,j,21} & z_{i,j,22} & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ z_{i,j,N_b1} & \cdots & z_{i,j,N_bN_b} \end{bmatrix} & i \neq j, \\ \begin{bmatrix} (1 - C_{i1}) & 0 & \cdots & 0 \\ 0 & (1 - C_{i2}) & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & (1 - C_{iN_b}) \end{bmatrix} & i = j, \end{cases} \]

\[\mathbf{b} = \begin{bmatrix} \int_{V_1} dV_1' \mathbf{f}_{11}(\mathbf{r}_1') \cdot \mathbf{E}_{inc}(\mathbf{r}_1') \\ \int_{V_1} dV_1' \mathbf{f}_{12}(\mathbf{r}_1') \cdot \mathbf{E}_{inc}(\mathbf{r}_1') \\ \vdots \\ \int_{V_1} dV_1' \mathbf{f}_{1N_b}(\mathbf{r}_1') \cdot \mathbf{E}_{inc}(\mathbf{r}_1') \end{bmatrix}. \]
Interaction Matrix \bar{Z}

Small Spheroid Assumption

$$\int_{V_i'} dV_i' \sim v_i = \frac{4}{3} \pi a_i^2 c_i \quad \text{and} \quad \epsilon(\bar{r}_j') \sim \epsilon_j$$

Then $z_{ij,\alpha\beta}$ becomes

$$z_{ij,\alpha\beta} = B_{j\alpha} \int_{V_i'} dV_i' \int_{V_j'} dV_j' \bar{f}_{i\beta}(\bar{r}_i') \cdot \bar{G}(\bar{r}_i', \bar{r}_j') \cdot \bar{f}_{j\alpha}(\bar{r}_j')$$

$$= B_{j\alpha} v_i v_j \bar{f}_{i\beta} \cdot \bar{G}(\bar{r}_i', \bar{r}_j') \cdot \bar{f}_{j\alpha}$$

where $\bar{f}_{i\beta}$ and $\bar{f}_{j\alpha}$ depend only upon the distance to the centers of the particle
Interaction Matrix \overline{Z} (cont.)

Now \overline{Z}_{ij} becomes

$$\overline{Z}_{ij} = \overline{f}_i \cdot \overline{G}(\overline{r}_i', \overline{r}_j') \cdot \overline{f}_j$$

where

$$\overline{f}_i = \begin{bmatrix} f_{i1,x} & f_{i1,y} & f_{i1,z} \\ \vdots & \vdots & \vdots \\ f_{iN_b,x} & f_{iN_b,y} & f_{iN_b,z} \end{bmatrix}, \quad \overline{G}(\overline{r}_i', \overline{r}_j') = \begin{bmatrix} (k^2 + \frac{\partial^2}{\partial x^2})\hat{x}\hat{x} & (\frac{\partial}{\partial x})\hat{x}\hat{y} & (\frac{\partial}{\partial x})\hat{x}\hat{z} \\ (\frac{\partial}{\partial y})\hat{x}\hat{y} & (k^2 + \frac{\partial^2}{\partial y^2})\hat{y}\hat{y} & (\frac{\partial}{\partial y})\hat{y}\hat{z} \\ (\frac{\partial}{\partial z})\hat{x}\hat{z} & (\frac{\partial}{\partial z})\hat{y}\hat{z} & (k^2 + \frac{\partial^2}{\partial z^2})\hat{z}\hat{z} \end{bmatrix} \frac{g(x, y, z)}{k^2}$$

and

$$\overline{f}_j = \overline{f}_i^T \text{ if } i = j$$

And now we express \overline{Z} as

$$\overline{Z} = \overline{f} \cdot \overline{G}(\mathcal{R}) \cdot \overline{f}^T,$$
Here \(N_b = 3 \), and particles \(i = 1, 2, 3 \) are shown.
Note: Row position is determined by particle index.
Note: Column position is determined by associated gridpoint.
Decompositions

Decide neighborhood distance \(r_d \)

Decompose \(\mathcal{R} \)

\[
\mathcal{R} \rightarrow \begin{cases}
\mathcal{R}_s & \forall \mathcal{R} \leq r_d \\
\mathcal{R}_w & \forall \mathcal{R} > r_d
\end{cases} \quad \mathcal{R}_s \cup \mathcal{R}_w = \mathcal{R}
\]

Now decompose \(\overline{G}(\mathcal{R}) \)

\[
\overline{G}(\mathcal{R}) = \overline{G}(\mathcal{R}_s) + \overline{G}^{eg}(\mathcal{R}_w),
\]

and finally \(\overline{Z} \)

\[
\overline{Z} = \overline{Z}_s + \overline{Z}_w = \overline{f} \cdot \overline{G}(\mathcal{R}_s) \cdot \overline{f}^\text{T} + \overline{f} \cdot \overline{G}^{eg}(\mathcal{R}_w) \cdot \overline{f}^\text{T}
\]
We have

\[(\overline{Z}^s + \overline{Z}^w) \cdot \overline{x} = \overline{b}\]

- Use an iterative solver such as *bicgstab* to solve. These CG solvers require only the matrix vector product $\overline{Z} \cdot \overline{x}$

 - $\overline{Z}^s \cdot \overline{x}$ is a sparse multiplication ($O(N)$)

 - $\overline{Z}^w \cdot \overline{x}$ can be computed quickly ($O(N\log(N))$) by exploiting the structure inherent in $\overline{G}^{eg}(\mathcal{R}_w)$
\(\gamma^{th} \) Order Taylor Series Expansion of \(\overline{G}^{eg}(R_w) \)

If particles \(i \) and \(j \) are associated with gridpoints \(g^{l_{imi}} \) and \(g^{l_{jmj}} \) located at \(\overline{r}_{g}^{l_{imi}} \) and \(\overline{r}_{g}^{l_{jmj}} \) respectively, then

\[
\overline{G}^{eg}_{ij}(R_w) = \sum_{\gamma=0}^{\infty} \frac{1}{\gamma!} \left(\Delta x_{ij} \frac{\partial}{\partial x} + \Delta y_{ij} \frac{\partial}{\partial y} + \Delta z_{ij} \frac{\partial}{\partial z} \right)^\gamma \overline{G}(\overline{r}_{g}^{l_{imi}}, \overline{r}_{g}^{l_{jmj}})
\]

or via the trinomial theorem as

\[
\overline{G}^{eg}_{ij}(R_w) = \sum_{\gamma=0}^{\infty} \sum_{\gamma_x+\gamma_y+\gamma_z=\gamma} \left(\frac{1}{\gamma_x! \gamma_y! \gamma_z!} \right) \left(\Delta x_{ij} \right)^{\gamma_x} \left(\Delta y_{ij} \right)^{\gamma_y} \left(\Delta z_{ij} \right)^{\gamma_z} \frac{\partial^{\gamma_x}}{\partial x^{\gamma_x}} \frac{\partial^{\gamma_y}}{\partial y^{\gamma_y}} \frac{\partial^{\gamma_z}}{\partial z^{\gamma_z}} \overline{G}(\overline{r}_{g}^{l_{imi}}, \overline{r}_{g}^{l_{jmj}})
\]

where

\[
\Delta \xi_{ij} = \Delta \xi_i - \Delta \xi_j
\]

\[
= (\overline{r}_{i, \xi} - \overline{r}_{g, \xi}^{l_{imi}}) - (\overline{r}_{j, \xi} - \overline{r}_{g, \xi}^{l_{jmj}})
\]

for \(\xi \Rightarrow x, y, \) or \(z \)
Taylor Expansion (cont.)

Separate particle dependant quantities

\[\bar{f}_{\gamma x\gamma y\gamma z} \equiv \left(\prod_{\xi=x,y,z} (\Delta \xi)^{\gamma \xi} \right) \bar{f}_i, \quad \forall \ i = 1..N. \]

and gridpoint dependant quantities

\[\bar{G}_{\gamma x\gamma y\gamma z} \equiv \left(\frac{\gamma!}{\gamma_x!\gamma_y!\gamma_z!} \right) \frac{\partial^{\gamma x}}{\partial x^{\gamma x}} \frac{\partial^{\gamma y}}{\partial y^{\gamma y}} \frac{\partial^{\gamma z}}{\partial z^{\gamma z}} \bar{G}(\bar{r}^{\Delta \Delta m \Delta n}) \]
Taylor Expansion (cont.)

Now we can express \overline{Z}^w as

\[
\overline{Z}^w = \overline{f} \cdot \overline{G}^z(\mathcal{R}_w) \cdot \overline{f}^T
\]

\[
= \sum_{\gamma=0}^{\infty} \sum_{\gamma_x+\gamma_y+\gamma_z=\gamma} \overline{Z}^w_{\gamma_x\gamma_y\gamma_z}
\]

where

\[
\overline{Z}^w_{\gamma_x\gamma_y\gamma_z} = \sum \sum \sum (-1)^{\gamma_{x_2}+\gamma_{y_2}+\gamma_{z_2}} \left(\begin{array}{c}
\gamma_{x_2} \\
\gamma_{y_2} \\
\gamma_{z_2}
\end{array} \right) \left(\begin{array}{c}
\gamma_x \\
\gamma_y \\
\gamma_z
\end{array} \right) \overline{f} \gamma_{x_1} \gamma_{y_1} \gamma_{z_1} \overline{G} \gamma_{x_2} \gamma_{y_2} \gamma_{z_2} \overline{f}^T
\]
Example

For example, for $\gamma = 2$

\[
(\overline{Z}^s + \overline{Z}^w) \cdot \overline{x} = \overline{b}
\]

\[
\left(\overline{f} \cdot \overline{G(R_s)} \cdot \overline{f}^T \right) \cdot \overline{x} =
\]

\[
\left(\overline{f} \cdot \overline{G(R_s)} \cdot \overline{f}^T + \sum_{\gamma_x + \gamma_y + \gamma_z = 2} \overline{Z}^w_{\gamma_x \gamma_y \gamma_z} \right) \cdot \overline{x} =
\]

\[
\left(\overline{f} \cdot \overline{G(R_s)} \cdot \overline{f}^T + \left(\overline{Z}^w_{200} + \overline{Z}^w_{110} + \overline{Z}^w_{101} + \overline{Z}^w_{020} + \overline{Z}^w_{011} + \overline{Z}^w_{002} \right) \right) \cdot \overline{x} =
\]

and, for example, the $\gamma_x = 2, \gamma_y = 0, \gamma_z = 0 \, (\overline{Z}^w_{200})$ term would be

\[
\overline{Z}^w_{200} = \overline{f}_{200} \, \overline{G}_{200} \, \overline{f}_{000}^T - 2 \overline{f}_{100} \, \overline{G}_{200} \, \overline{f}_{100}^T + \overline{f}_{000} \, \overline{G}_{200} \, \overline{f}_{200}^T
\]
Toeplitz Structure

For 1-D point interactions:

Interaction matrix is Toeplitz

\[
\begin{bmatrix}
G_0 & G_1 & G_2 & G_3 \\
G_{-1} & G_0 & G_1 & G_2 \\
G_{-2} & G_{-1} & G_0 & G_1 \\
G_{-3} & G_{-2} & G_{-1} & G_0
\end{bmatrix}
\]
Convolution Picture

Then

\[A_u = \Pi_{bt}(A) = [1:27] \]

\[x_z = \zeta_p(x) = \text{(see below)} \]
FFT Enhanced Multiply Speedup

From the last example,

\[\overline{Z}^{w}_{200} = \overline{f}_{200} \overline{G}_{200} \overline{f}^{T}_{000} - 2 \overline{f}_{100} \overline{G}_{200} \overline{f}^{T}_{100} + \overline{f}_{000} \overline{G}_{200} \overline{f}^{T}_{200} \]

\(\overline{G}_{200} \overline{f}^{T}_{000} \), \(\overline{G}_{200} \overline{f}^{T}_{100} \), and \(\overline{G}_{200} \overline{f}^{T}_{200} \) can now be realized in

- \(\mathcal{O}(N \log N) \) complexity
- \(\mathcal{O}(N) \) memory storage, and
- 1-D FFT

Full CG solution: \(\mathcal{O}(KN_T N \log N) \) complexity, where

- \(K \) is the number of iteration
- \(N_T \) is the number of terms in the Taylor series expansion
- \(N \) is the number of particles

<table>
<thead>
<tr>
<th>Order (\gamma)</th>
<th>Terms (\overline{G}_{\gamma_1 \gamma_2 \gamma_3})</th>
<th>(N_T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>112</td>
</tr>
</tbody>
</table>

Number of expansion terms and total number of FFTs for expansion order \(\gamma \).
Computation times and Kullback-Leibler distances for SMCG method for $\gamma=0-5$ with $r_d=1.1\Delta r_g$ and $N_{cube}=10000$.
Computation times and Kullback-Leibler distances for SMCG method for $r_d=0.1–2.1\Delta r_g$ with $\gamma=2$ and $N_g=8$.
Computation times and Kullback-Leibler distances for SMCG method for $N_g=6–14$ with $\gamma=2$ and $r_d=1.1 \Delta r_g$.

Results
Results

Radar Cross Section (σ) for increasing accurate approximations.
Comments & Conclusion

– The effective permittivity of randomly oriented collections of discrete spheroidal inclusions was obtained.

– The SMCG Method was extended to 3-D
 • Iterative solution in $O(KN_TN \log_2 N)$
 • Memory allocation is also improved to $O(N_TN)$
 • Speedup of > 20-30 times while results are within < 1% accurate

– A new $O(N \log N)$ FFT-based method to expedite matrix-vector multiplies involving multilevel block-Toeplitz (MBT) matrices was presented.

Acknowledgement
This work was supported by National Science Foundation (NSF) under grant numbers ECS9615799 and ECS9423861, by the Office of Naval Research (ONR) under contract numbers N00014-99-1-0175 and N00014-97-1-0172, and through a NSF Graduate Fellowship.