Electromagnetic Induction (EMI) Response from Conducting and Permeable Spheroidal Shells

Benjamin E. Barrowes, Kevin O'Neill, Chi O. Ao, and J. A. Kong

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

PIERS (Progress In Electromagnetics Research Symposium)

July 2, 2002
Presentation Outline

Introduction – Motivation

Exact Solution
- Formulation
- Boundary conditions
- Truncated solution

Results and limiting cases for small and moderate size parameter c

Conclusion
EMI is promising in the detection of Unexploded Ordnance (UXO)

- Very low frequencies (3Hz-30KHz)
- Low frequency permits ignoring ground effects
- Spheroidal geometry allows models of complex shapes
 - Spheres
 - Plates
 - Needles
- Can discriminate between different shapes and compositions
Geometry and Formulation

Spheroidal shell EMI response

- conducting and permeable shell
- time-harmonic excitation
- quasi-magnetostatic regime

Region I

\[
\begin{align*}
\mu_1, \sigma_1, \overline{H}_1 \\
k_1^2 &= i \omega_1 \sigma_1 \mu_1 \\
\nabla \times \nabla \times \overline{H}_1 - k_1^2 \overline{H}_1 &= 0
\end{align*}
\]

Region II

\[
\begin{align*}
\mu_2 &\approx \mu_0, \sigma_2 \approx 0 \\
k_2^2 &\approx 0 \\
\overline{H}_2 &= -\nabla U_2
\end{align*}
\]

Region III

\[
\begin{align*}
\mu_3, \sigma_3, \overline{H}_3 \\
k_3^2 &= i \omega_3 \sigma_3 \mu_3 \\
\nabla \times \nabla \times \overline{H}_3 - k_3^2 \overline{H}_3 &= 0
\end{align*}
\]

\[
\overline{H}_2 = \overline{H}_o + \overline{H}_s = -\nabla U_o - \nabla U_s
\]
Exact Solution – Regions I and III

Expand \bar{H}_1 and \bar{H}_3 in terms of vector spheroidal wave functions.

$$\bar{H}_1 = H_o \sum_{m=0}^{\infty} \sum_{n=m}^{\infty} \sum_{p=0}^{1} \left[A^{(M)}_{pmn} \overline{M}^{r(1)}_{pmn}(c; \xi, \eta, \phi) + A^{(N)}_{pmn} \overline{N}^{r(1)}_{pmn}(c; \xi, \eta, \phi)
ight.$$

$$+ C^{(M)}_{pmn} \overline{M}^{r(3)}_{pmn}(c; \xi, \eta, \phi) + C^{(N)}_{pmn} \overline{N}^{r(3)}_{pmn}(c; \xi, \eta, \phi) \right]$$

$$\bar{H}_3 = H_o \sum_{m=0}^{\infty} \sum_{n=m}^{\infty} \sum_{p=0}^{1} \left[D^{(M)}_{pmn} \overline{M}^{r(1)}_{pmn}(c; \xi, \eta, \phi) + D^{(N)}_{pmn} \overline{N}^{r(1)}_{pmn}(c; \xi, \eta, \phi) \right]$$

where

- $H_o \Rightarrow$ primary field strength
- $\xi, \eta, \phi \Rightarrow$ spheroidal coordinates
- $c = kd/2 \Rightarrow$ spheroidal size parameter
- $d = 2\sqrt{b^2 - a^2} \Rightarrow$ interfocal distance
- $A^{(M)}_{pmn}, A^{(N)}_{pmn}, C^{(M)}_{pmn}, C^{(N)}_{pmn} \Rightarrow$ expansion coefficients
Exact Solution – Region II

Expand potentials U_o, U_s, and U_2 as

\[
U_o(\mathbf{r}) = \frac{H_0 d}{2} \sum_{m=0}^{\infty} \sum_{n=m}^{\infty} \sum_{p=0}^{1} b_{pmn} \Phi_{pmn}^{(1)}(\xi, \eta, \phi)
\]

\[
U_s(\mathbf{r}) = \frac{H_0 d}{2} \sum_{m=0}^{\infty} \sum_{n=m}^{\infty} \sum_{p=0}^{1} B_{pmn} \Phi_{pmn}(\xi, \eta, \phi)
\]

\[
U_2 = U_o + U_s
\]

where

\[
\Phi_{pmn}^{(1)}(\xi, \eta, \phi) = P_n^m(\xi)P_n^m(\eta)T_{pm}(\phi)
\]

\[
\Phi_{pmn}(\xi, \eta, \phi) = Q_n^m(\xi)P_n^m(\eta)T_{pm}(\phi)
\]
Solutions in Terms of Spheroidal Wavefunctions

Unknowns – $A_{pmn}^{(M)}, A_{pmn}^{(N)}, C_{pmn}^{(M)}, C_{pmn}^{(N)}, D_{pmn}^{(M)}, D_{pmn}^{(N)},$ and B_{pmn}

Scalar spheroidal wave function of the i^{th} kind is

$$
\psi_{pmn}^{(i)} = S_{mn}(c, \eta) R_{mn}^{(i)}(c, \xi) T_{pm}(\phi)
$$

where

- $S_{mn}(c, \eta) \Rightarrow$ spheroidal angle function (\rightarrow Sum of Associated Legendre functions)
- $R_{mn}^{(i)}(c, \xi) \Rightarrow$ spheroidal radial function (\rightarrow Sum of Spherical Bessel functions)
- $T_{pm}(\phi) \Rightarrow$ spheroidal azimuthal function (\rightarrow sines and cosines)

Vector spheroidal wave functions are generated from the scalar wave function

$$
\overline{M}_{pmn}^{r(i)} = \nabla \psi_{pmn}^{(i)} \times \hat{r}
$$

$$
\overline{N}_{pmn}^{r(i)} = \frac{1}{k_1} \nabla \times \overline{M}_{pmn}^{r(i)}
$$
Boundary Conditions

Outer (α) boundary $d = d_{\alpha}$

\[H_1 \eta = H_2 \eta \]
\[H_1 \phi = H_2 \phi \]
\[\mu_r H_1 \xi = H_2 \xi \]

Matching H_ξ

\[\mu_r \sum_{n=m}^{\infty} \left\{ (-1)^p m A_{p,n}^{(M)} \bar{M}_{\xi;n}^{(1)}(c_{1\alpha}, \eta) + \frac{1}{c_{1\alpha}} A_{p,n}^{(N)} \bar{N}_{\xi;n}^{(1)}(c_{1\alpha}, \eta) \right\} + \mu_r \sum_{n=m}^{\infty} \left\{ (-1)^p m C_{p,n}^{(M)} \bar{M}_{\xi;n}^{(3)}(c_{1\alpha}, \eta) + \frac{1}{c_{1\alpha}} C_{p,n}^{(N)} \bar{N}_{\xi;n}^{(3)}(c_{1\alpha}, \eta) \right\} = - \sum_{n=m}^{\infty} \left[b_{p,n} \frac{dP_n}{d\xi_0} + B_{p,n} \frac{dQ_n}{d\xi_0} \right] P_n(\eta) \]

After “Testing”

\[\mu_r \sum_{n=m}^{\infty} \left\{ (-1)^p m A_{p,n}^{(M)} I_{\xi;n}^{(1)}(c_{1\alpha}, \eta) + \frac{1}{c_{1\alpha}} A_{p,n}^{(N)} I_{\xi;n}^{(1)}(c_{1\alpha}, \eta) \right\} + \mu_r \sum_{n=m}^{\infty} \left\{ (-1)^p m C_{p,n}^{(M)} I_{\xi;n}^{(3)}(c_{1\alpha}, \eta) + \frac{1}{c_{1\alpha}} C_{p,n}^{(N)} I_{\xi;n}^{(3)}(c_{1\alpha}, \eta) \right\} = - \left[b_{p,n} \frac{dP_n}{d\xi_0} + B_{p,n} \frac{dQ_n}{d\xi_0} \right] \]

Inner (β) boundary $d = d_{\beta}$

\[H_1 \eta = H_3 \eta \]
\[H_1 \phi = H_3 \phi \]
\[\mu_r H_1 H_3 = \mu_r H_3 \xi \]

Matching H_ξ

\[\mu_r \sum_{n=m}^{\infty} \left\{ (-1)^p m A_{p,n}^{(M)} \bar{M}_{\xi;n}^{(1)}(c_{1\beta}, \eta) + \frac{1}{c_{1\beta}} A_{p,n}^{(N)} \bar{N}_{\xi;n}^{(1)}(c_{1\beta}, \eta) \right\} + \mu_r \sum_{n=m}^{\infty} \left\{ (-1)^p m C_{p,n}^{(M)} \bar{M}_{\xi;n}^{(3)}(c_{1\beta}, \eta) + \frac{1}{c_{1\beta}} C_{p,n}^{(N)} \bar{N}_{\xi;n}^{(3)}(c_{1\beta}, \eta) \right\} \]

After “Testing”

\[\mu_r \sum_{n=m}^{\infty} \left\{ (-1)^p m A_{p,n}^{(M)} J_{\xi;n}^{(1)}(c_{3\beta}, \eta) + \frac{1}{c_{3\beta}} A_{p,n}^{(N)} J_{\xi;n}^{(1)}(c_{3\beta}, \eta) \right\} + \mu_r \sum_{n=m}^{\infty} \left\{ (-1)^p m C_{p,n}^{(M)} J_{\xi;n}^{(3)}(c_{3\beta}, \eta) + \frac{1}{c_{3\beta}} C_{p,n}^{(N)} J_{\xi;n}^{(3)}(c_{3\beta}, \eta) \right\} \]
Truncated Solution

Truncate infinite series at L_T

Recast into matrix equations

\begin{align*}
\overline{Z}^{(1)}_{\xi}(c_{1\alpha}, \eta) \cdot \overline{A} + \overline{Z}^{(3)}_{\xi}(c_{1\alpha}, \eta) \cdot \overline{C} & = \overline{W}^{(p)}_{\xi} \cdot \overline{b} + \overline{W}^{(q)}_{\xi} \cdot \overline{B} \\
\overline{Z}^{(1)}_{\phi}(c_{1\alpha}, \eta) \cdot \overline{A} + \overline{Z}^{(3)}_{\phi}(c_{1\alpha}, \eta) \cdot \overline{C} & = \overline{W}^{(p)}_{\phi} \cdot \overline{b} + \overline{W}^{(q)}_{\phi} \cdot \overline{B} \\
\overline{Z}^{(1)}_{\eta}(c_{1\alpha}, \eta) \cdot \overline{A} + \overline{Z}^{(3)}_{\eta}(c_{1\alpha}, \eta) \cdot \overline{C} & = \overline{W}^{(p)}_{\eta} \cdot \overline{b} + \overline{W}^{(q)}_{\eta} \cdot \overline{B} \\
\overline{Z}^{(1)}_{\xi}(c_{1\beta}, \eta) \cdot \overline{A} + \overline{Z}^{(3)}_{\xi}(c_{1\beta}, \eta) \cdot \overline{C} & = \overline{Z}^{(1)}_{\xi}(c_{3\beta}, \eta) \cdot \overline{D} \\
\overline{Z}^{(1)}_{\phi}(c_{1\beta}, \eta) \cdot \overline{A} + \overline{Z}^{(3)}_{\phi}(c_{1\beta}, \eta) \cdot \overline{C} & = \overline{Z}^{(1)}_{\phi}(c_{3\beta}, \eta) \cdot \overline{D} \\
\overline{Z}^{(1)}_{\eta}(c_{1\beta}, \eta) \cdot \overline{A} + \overline{Z}^{(3)}_{\eta}(c_{1\beta}, \eta) \cdot \overline{C} & = \overline{Z}^{(1)}_{\eta}(c_{3\beta}, \eta) \cdot \overline{D}
\end{align*}

where

- $\overline{Z}^{(i)}_{\beta}(\xi)$ are $L_T \times 2L_T$ matrices and
- $\overline{W}^{(p,q)}_{\beta}(\xi) (\beta = \xi, \eta, \phi)$ are $L_T \times L_T$ matrices, respectively
Far-Field Dipole Response

Far-field expression for secondary field

- Axial

\[M_z = H_o \left(\frac{\pi d^3}{6} \right) B_{001} \]

- Transverse

\[M_t = H_o \left(\frac{\pi d^3}{3} \right) B_{011} \]
Results
Prolate Spheroid, Axial primary field

- elongation \((e) = 1.001\)
- size ratio \(\frac{d_\beta}{d_\alpha} = 0.01\)

\[\mu_{r1} = \mu_{r2} = 1\]

wavenumber ratio \(k_3/k_1 = 1\)

Induction number \(\log(k_1 a)\)

Normalized EMI response

Re\{analytic shell\}, Im\{analytic shell\}, Re\{analytic solid\}, Im\{analytic solid\}, Re\{SPA solid\}, Im\{SPA solid\}
Prolate Spheroid, Axial primary field

- elongation $(e) = 1.001$
- size ratio $\frac{d_\beta}{d_\alpha} = 0.01$
- $\mu_{r1} = \mu_{r2} = 1$
- wavenumber ratio $\frac{k_3}{k_1} = 0.1$

Normalized EMI response versus induction number $\log(k_1 a)$.
Prolate Spheroid, Axial primary field

- Elongation \((e) = 1.001 \)
- Size ratio \(\frac{d_\beta}{d_\alpha} = 0.01 \)
- \(\mu_{r1} = \mu_{r2} = 10 \)
- Wavenumber ratio \(\frac{k_3}{k_1} = 0.1 \)

Diagram showing the normalized EMI response against the induction number \(\log(k_1 a) \). The graph compares different analytic and solid models, including real and imaginary parts for each case.
Prolate Spheroid, Axial primary field

- elongation (e) = 3
- size ratio $d_\beta/d_\alpha = 0.01$
- $\mu_{r1} = \mu_{r2} = 1$
- wavenumber ratio $k_3/k_1 = 0.1$

Induction number $\log(k_1 a)$

Normalized EMI response

- $\text{Re}\{\text{analytic shell}\}$
- $\text{Im}\{\text{analytic shell}\}$
- $\text{Re}\{\text{analytic solid}\}$
- $\text{Im}\{\text{analytic solid}\}$
- $\text{Re}\{\text{SPA solid}\}$
- $\text{Im}\{\text{SPA solid}\}$
Prolate Spheroid, Axial primary field

- Elongation: (e) = 1.001
- Size ratio: $\frac{d_\beta}{d_\alpha} = 0.4$
- Permeability: $\mu_{\alpha} = \mu_{\beta} = 1$
- Wavenumber ratio: $\frac{k_3}{k_1} = 1$

Normalized EMI response vs. Induction number $\log(k_1a)$
Prolate Spheroid, Axial primary field

 elongation (e) = 1.001
 size ratio \(\frac{d_\beta}{d_\alpha} = 0.4 \)

 \(\mu = \mu = 1 \)

 wavenumber ratio \(\frac{k_3}{k_1} = 0.25 \)

\[
\begin{align*}
\text{Normalized EMI response} & \\
\text{Induction number } \log(k_1 a) & \\
\end{align*}
\]
Prolate Spheroid, Axial primary field

- Elongation \((e) = 1.001 \)
- Size ratio \(\frac{d_\beta}{d_\alpha} = 0.8 \)
- \(\mu_{r1} = \mu_{r2} = 1 \)
- Wavenumber ratio \(\frac{k_3}{k_1} = 0.25 \)

Induction number \(\log(k_1 a) \) vs. Normalized EMI response.

Graph shows data for \(\text{Re}\{\text{analytic shell}\} \), \(\text{Im}\{\text{analytic shell}\} \), \(\text{Re}\{\text{analytic solid}\} \), \(\text{Im}\{\text{analytic solid}\} \), \(\text{Re}\{\text{SPA solid}\} \), and \(\text{Im}\{\text{SPA solid}\} \).
Prolate Spheroid, Axial primary field

 elongation \((e) = 1.001 \)
 size ratio \(\frac{d_β}{d_α} = 0.4 \)
\[\mu_r = \mu_r = 10 \]
 wavenumber ratio \(\frac{k_3}{k_1} = 0.25 \)
Prolate Spheroid, Axial primary field

- Elongation \((e) = 3\)
- Size ratio \(\frac{d_\beta}{d_\alpha} = 0.4\)
- \(\mu_r = \mu = 10\)
- Wavenumber ratio \(\frac{k_3}{k_1} = 0.5\)

Graph showing normalized EMI response vs. induction number \(\log(k_1a)\).
Conclusion

Full analytic solution for the Electromagnetic Induction (EMI) response of a conducting and permeable spheroidal shell demonstrated

Spheroidal shells provide flexible model for various canonical shapes modeling UXOs including solid and hollow spheres, needles, and disks.

Method becomes unstable/ill-conditioned for high large size parameter c

High frequency techniques such as the Small Perturbation Approximation (SPA) and Asymptotic approximations for $S_{mn}(c, \eta)$ and $R_{mn}^{(i)}(c, \xi)$ may help overcome this limitation.

Acknowledgement
This work was supported by a grant from the Cold Regions Research Laboratory and through a NSF Graduate Fellowship.