The local introduction of strongly interacting species and the loss of geographic variation in species and species interactions

CRAIG W. BENKMAN,* ADAM M. SIEPIELSKI* and THOMAS L. PARCHMAN*†
*Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA, †Department of Biology, MSC 3AF, New Mexico State University, Las Cruces, NM 88003, USA

Abstract
Species introductions into nearby communities may seem innocuous, however, these introductions, like long-distance introductions (e.g. trans- and intercontinental), can cause extinctions and alter the evolutionary trajectories of remaining community members. These 'local introductions' can also more cryptically homogenize formerly distinct populations within a species. We focus on several characteristics and the potential consequences of local introductions. First, local introductions are commonly successful because the species being introduced is compatible with existing abiotic and biotic conditions; many nearby communities differ because of historical factors and the absence of certain species is simply the result of barriers to dispersal. Moreover, the species with which they interact most strongly (e.g. prey) may have, for example, lost defences making the establishment even more likely. The loss or absence of defences is especially likely when the absent species is a strongly interacting species, which we argue often includes mammals in terrestrial communities. Second, the effects of the introduction may be difficult to detect because the community is likely to converge onto nearby communities that naturally have the introduced species (hence the perceived innocuousness). This homogenization of formerly distinct populations eliminates the geographic diversity of species interactions and the geographic potential for speciation, and reduces regional species diversity. We illustrate these ideas by focusing on the introduction of tree squirrels into formerly squirrel-less forest patches. Such introductions have eliminated incipient species of crossbills (Loxia spp.) co-evolving in arms races with conifers and will likely have considerable impacts on community structure and ecosystem processes.

Keywords: co-evolution, divergent selection, geographic selection mosaic, keystone species, Loxia, strongly interacting species

Received 8 February 2007; revision accepted 27 March 2007

Introduction
Islands are the source of many new species (Mayr 1963). One reason is that gene flow is interrupted between populations on different islands. However, intervening water barriers are more than just barriers to gene flow. They differentially affect the ability of different species to colonize islands, which result in islands differing both from each other and from the mainland in their biotic compositions. Of course, islands may also differ in abiotic conditions, and this further compounds the biotic variation that drives divergent selection between populations. Conversely, the varying biotic compositions and especially the absence of certain species from islands (e.g. large mammalian predators and herbivores) make them particularly vulnerable to devastating impacts from species introductions (Blackburn et al. 2004; Cox & Lima 2006). Thus, the threat of introductions to biota of isolated islands is rightfully the concern of many conservation biologists. Another major concern of conservation biologists is the
impacts stemming from trans- and intercontinental species introductions.

While the consequences of such introductions are clearly important (Mack et al. 2000), we would like to focus on how local introductions cause extinctions and eliminate divergent selection between populations and thus erode processes that give rise to diversity. By ‘local introductions’, we mean introductions of species into nearby habitats that are otherwise quite similar to their source habitat. We start with examples from our research. Throughout, we place an emphasis on the importance of considering the conservation and maintenance of the geographic diversity of interactions among species rather than merely species themselves (Thompson 2005).

Years ago, one of us visited Newfoundland in an effort to understand the factors contributing to the adaptive radiation of crossbills (Loxia), a genus of finches that is specialized for foraging on seeds in conifer cones. The conifer forests of Newfoundland appeared quite similar to those on the nearby mainland of North America (separated by as little as 15 km), yet, perplexingly, the endemic and large-billed Newfoundland crossbill (Loxia curvirostra percna) was remarkably distinct from crossbills on the mainland (Fig. 1). Indeed, the similarity of the forests in these two areas presumably contributed to the rush to add mammal species to the ‘impoverished’ forests of Newfoundland. Twelve species of mammals have been introduced, including moose (Alces alces), snowshoe hare (Lepus americanus) and red squirrels Tamiasciurus hudsonicus (Government of Newfoundland and Labrador 2007), while only 14 mammal species are considered native to Newfoundland (Dodds 1983). After a bit of natural-history-informed thought, it became evident that the key to the unique morphology of the Newfoundland crossbill was the absence of red squirrels on Newfoundland and their presence on the mainland (Benkman 1989; Parchman & Benkman 2002). Needless to say, the introduction of red squirrels was a bad omen for the Newfoundland crossbill. Red squirrels were introduced to Newfoundland in 1963 and the last Newfoundland crossbills may have been a pair on an islet off of Newfoundland.
the year red squirrels colonized this islet in 1988. Thus, it
took less than 30 years, for the introduction of a species
initially present only 15 km away, to cause the decline and
probable extinction of a species endemic to and apparently
abundant on a rather large island (111 390 km²).

The occurrence of red squirrels is so important because
they are both a strong selective agent on and pre-emptive
competitor for the seeds in conifer cones (both red squirrels
and crossbills are seed predators). The presence and
absence of red squirrels and other tree squirrels (the other
genus of tree squirrels is Sciurus) result in the evolution of
quite different cone structures, which causes divergent
selection on crossbills between areas with and without tree
squirrels. Where tree squirrels are present, crossbills are
less abundant as a result of competition for conifer seeds,
selection by tree squirrels drives the evolution of seed
defences and crossbills adapt to the average squirrel-
defended cone. Where tree squirrels are absent, crossbills
are much more abundant, and conifers lose squirrel
defences and increase crossbill defences (Fig. 1). Crossbills
evolve larger bills to adapt to these cones with increased
crossbill defences (Fig. 1), and defences and counter-
offenses escalate in the absence of tree squirrels as a result
of co-evolutionary arms races (Benkman 1999; Benkman
et al. 2001, 2003; Parchman & Benkman 2002; Mezquida &
Benkman 2005). The occurrence of local co-evolutionary
arms races embedded in larger areas where tree squirrels
are present causes divergent selection between populations
of crossbills (i.e. a selection mosaic) that is strong enough
to lead to high levels of reproductive isolation and to cause
speciation (Smith & Benkman 2007).

Co-evolutionary arms races between crossbills and
conifers have occurred on other oceanic islands such as
Hispaniola (Parchman et al. 2007), but have also occurred
on forested islands within continents. In isolated mountain
ranges east and west of the Rocky Mountains where
red squirrels are absent, crossbills have co-evolved with
lodgepole pine (Pinus contorta latifolia) in a replicated
manner (Benkman 1999; Benkman et al. 2001, 2003). As on
Newfoundland, red squirrels were introduced into one of
these mountain ranges east of the Rocky Mountains where
an endemic crossbill evolved (the Cypress Hills: Benkman
1999; Benkman et al. 2001) but is now evidently extinct.
The lodgepole pine forests in the Cypress Hills appear
rather similar to the lodgepole pine forests in the Rocky
Mountains (La Roi & Hnatiuk 1980), but not to a crossbill
(or to a red squirrel!). Because lodgepole pine in the
Cypress Hills, like black spruce (Picea mariana) on New-
foundland, had lost seed defences directed at red squirrels,
the introduced red squirrels flourished at the expense of
the endemic crossbills (Benkman 1993, 1999; Benkman
et al. 2001). For example, the densities of red squirrels in the
Cypress Hills are now upwards of four-times greater
than in comparable habitat in other areas of the Rocky
Mountains (Benkman 1999). The evidence to date (Bruno
et al. 2005) indicates that predator–prey interactions tend to
be more co-evolved than other forms of interactions, thus
we suspect that reductions in defences are more likely to
contribute to the success of introductions than would
evolutionary changes in response to the absence of com-
petitors or mutualists.

Two characteristics of pine squirrels (Tamiasciurus) critical
to such a selection mosaic are that they are very strong
competitors for seeds in and selective agents on conifer
cones (Benkman & Siepielski 2004) and they avoid crossing
large (> 100 m) openings between forests. The limited
dispersal of pine squirrels leads to areas with and without
pine squirrels and a selection mosaic that leads to divergent
evolutionary trajectories for crossbills in the different areas
(Fig. 1). Thus, differences in community composition cause
divergent selection and potentially speciation. Differences
will be most pronounced where barriers to dispersal are
greatest such as for nonvolant organisms on islands
and freshwater aquatic species that also effectively occur
on ‘islands’ within a sea of land. However, even for volant
species on continents and marine species, there is often
graphic variation in the community within which a
given species interacts strongly (Strauss & Irwin 2004;
Thompson 2005). Another example of such geographic
variation in community composition contributing to
variation in species interactions and evolution includes
Grega moths that are pollinators and seed parasites of
Lithobaphra (Thompson & Cunningham 2002; Thompson
& Fernandez 2006). Although well-characterized examples
are few, we suspect that there will be an increasing number
of such examples as researchers address the causes and
evolutionary consequences of geographic variation in
species interactions (Thompson 2005). We argue below
that the presence and absence of strongly interacting
species, particularly mammals, is especially likely to cause
such selection mosaics, but first we discuss an emerging
view of the geographic structure of species interactions.
This enables us to provide a framework for discussing why
local introductions should be successful and may involve
serious consequences.

The geographic mosaic

Much of Earth’s biological diversity is a result of inter-
specific interactions varying geographically among com-
unities and ultimately causing populations within these
different communities to evolve and co-evolve along unique
pathways. The above example with crossbill popula-
tions co-evolving (Benkman et al. 2001, 2003; Parchman &
Benkman 2002) and speciating (Smith & Benkman 2007)
only in geographic areas without red squirrels provides
a clear example of how this may occur. Here, we briefly
review how an emerging view of the geographic structure

of species interactions, the geographic mosaic theory of co-evolution (Thompson 2005), pertains to local species introductions. Callaway et al. (2005) examined how this framework is useful for understanding plant introductions in relation to interactions in their rhizosphere, and have noted that the geographic mosaic of co-evolution may apply generally to species introductions and invasive species. Although there are three main parts of this theory, we focus on the first two because they are the most relevant for our discussion.

The first part is that interspecific interactions vary among populations, leading to selection mosaics that produce different evolutionary outcomes in different populations. Although selection mosaics can stem from variation in abiotic conditions, one common cause of selection mosaics is spatial variation in communities of interacting species (Strauss & Irwin 2004; Thompson 2005). Because groups of interacting species rarely have completely coincident ranges, and the divergent forms and outcomes of natural selection caused by varying species interactions across geographic space has been increasingly documented, geographic selection mosaics are likely a pervasive feature of species interactions (Thompson 2005). The second part is that because the strength of interactions often varies, some areas are co-evolutionary hotspots (populations where reciprocal selection and adaptation occur) and some are coldspots (populations where reciprocal selection and adaptation do not occur) (Thompson 2005). The same features creating selection mosaics often influence the occurrence of hot and coldspots across geographic space. The most important prediction is that natural selection will rarely favour the same traits across all populations and that co-evolved traits will rarely be fixed at the species level.

What have studies on the geographic mosaic of co-evolution revealed about the potential consequences of local introductions? They indicate that the strength and outcome of many interspecific interactions, co-evolving or otherwise, depend on the presence or absence of other species that are often found in neighbouring communities. Consequently, introducing other species from local, nearby communities that use similar resources and thus interact on a common interface has the potential to impact the outcome of the original interaction. Although our focus here is largely on the evolutionary and ecological impacts of local introductions on pairwise interactions between species, the presence or absence of one other species may also have indirect effects mediating evolutionary and ecological processes for other species. For instance, the evolution of lodgepole pine seed defences in response to selection exerted by red squirrels also acts to suppress seed predation by another seed predator, the lodgepole pine cone borer moth (Eucosma recissoriana), because the evolved defences that deter red squirrels also deter moths. Conversely, the loss of seed defences in response to relaxation of selection by red squirrels appears to allow greater seed predation by moths (Siepielski & Benkman 2004). While other types of introductions (i.e. transcontinental, etc.) can just as easily cause these potential effects, local introductions may seem less innocuous simply because the introduced species may occur in other local communities. In light of this framework, we now consider the evidence for why an introduction into areas near a species’ home location is likely to succeed more often than if introduced farther away.

Local introductions are more successful

Abiotic conditions

Minimally, invaders require environmental conditions they can tolerate to be successful. One pathway therefore is for the species’ tolerances to match the conditions of the invaded habitat (Peterson 2003). One of the best predictors of successful invasion by fishes in California is a match between the invaded habitat and the habitat of origin (Moyle & Marchetti 2006). Likewise, successful introductions of rainbow trout (Oncorhynchus mykiss) are limited to situations where their life history is compatible with the hydrological regime (Fausch et al. 2001) and the spread of Argentine ants (Linepithema humile) is limited by unfavourable abiotic conditions (Holway et al. 2002b). Several studies on birds and mammals also reveal that the suitability of the abiotic environment (as measured by the match between the latitudes or climate of origin and site of introduction, i.e. ‘climate matching’) is critical for the success of species introductions (Blackburn & Duncan 2001; Duncan et al. 2001). An alternative pathway to success is to have wide physiological tolerances. For example, fishes with wide physiological tolerances are more likely to invade watersheds in California (Marchetti et al. 2004) and bird species occupying larger geographic areas, and presumably having wider physiological tolerances, are more likely to persist after being introduced (Blackburn & Duncan 2001).

If abiotic similarity or compatibility is important, then species should often be able to invade nearby areas more readily than more distant areas. Such a pattern was found for fish invasions in California (Marchetti et al. 2004). Similarly, analyses of translocations of birds and mammals show that they are more likely to persist when moved into the core than into the periphery or outside of the species’ historic geographic range (Wolf et al. 1998). On a coarser scale, birds were more likely to succeed if introduced into the biogeographic region of origin than if introduced into a new biogeographic region (Blackburn & Duncan 2001). This could also reflect the ease at which more similar biotic communities can be invaded. Not only are nearby areas likely to have suitable abiotic conditions, but they also
harbour populations of suitable prey and other species (potential predators, competitors) with which a given species has evolved. Importantly, the prey of the potential invader may have lost or never evolved defences facilitating invasion.

Biotic changes in the absence of species

Species evolving in the absence of enemies are expected to lose defences that are costly to produce or maintain. The more generations a species evolves in the absence of their enemies and the more costly the defences, the more likely the defences will be lost. Several studies have shown that species that have evolved in the absence of predators or other enemies for thousands of years have lost defences that their ancestors had presumably evolved in the presence of enemies (e.g. Bowen & Van Vuren 1997). Other studies have shown that different predators favour the evolution of different sets of defences in different prey species, with variation in predator composition presumably causing divergent selection between ancestral prey populations contributing to their diversification (McPeek et al. 1996). Few studies however, have quantified the loss of defences between populations of a single species. One such study was by Zangerl & Berenbaum (2005). They found that less than 300 years after being introduced into North America, wild parsnip (*Pastinaca sativa*) apparently evolved lower concentrations of toxic furanocoumarins in the absence of its main herbivore, the parsnip webworm (*Depressaria pastinacella*). Wild parsnip then rapidly re-evolved higher concentrations within 100 years after the webworm was accidentally introduced. Similarly, the red cedar (*Thuja plicata*) that have colonized the Queen Charlotte Islands, and evolved in the absence of ungulate herbivores during the past 10 000 years, have less chemical defence and are preferred by black-tailed deer (*Odocoileus hemionus*) over red cedar from the mainland where deer are present (Vourc’h et al. 2001). This decrease in plant defences presumably explains why the recently introduced deer on the Queen Charlotte Islands are depleting red cedar (and other plants) to such a great extent (Vourc’h et al. 2001). Perhaps for the same reason (predators of the deer are also absent), the introduced deer, much like introduced red squirrels on Newfoundland and in the Cypress Hills, now occur at densities higher than their mainland counterparts. The reduction in defences presumably enables introduced consumers to persist and rapidly increase in population size following their introduction. The combination of suitable abiotic conditions and fewer defences by potential victims should lead to particularly high success rates for local introductions. For example, 11 out of 12 introductions of mammals onto Newfoundland succeeded (Government of Newfoundland & Labrador 2007). This is a much higher success rate than the usual one in 10 or ‘tens rule’ (Williamson & Fitter 1996). Nine of the 11 species successfully introduced onto Newfoundland are found on the adjacent mainland, and two others are the widespread and invasive Norwegian rat (*Rattus norvegicus*) and house mouse (*Mus musculus*). The one unsuccessful introduction was of bison (*Bison bison*), for which the nearest population is over 2900 km to the west. High success rates of introductions have also been found for mammals being introduced onto other islands (e.g. nearly 60% in New Zealand where there are no native land mammals; Courchamp et al. 2003), as well as between continents (Jeschke & Strayer 2005).

Some effects of local introductions

Although we do not expect that local introductions of species will be of greater conservation concern than more distant introductions, we suspect that the adverse effects are likely to go unnoticed (although this is true for most introductions; Simberloff 1991). Indeed, the few studies concerning local introductions that we have found are a testament to this. Because local introductions will act to homogenize communities, it is difficult to detect their effects without baseline studies prior to the introduction. For example, prior to our research no one in either Newfoundland or the Cypress Hills (a provincial park) even suspected that the endemic crossbills were declining or threatened, let alone extinct. By homogenizing nearby communities, local introductions decrease the geographic diversity of interactions a species experiences. This eliminates an important source of geographically variable and divergent selection between populations, which results in a reduction in genetic and phenotypic variation that may be critical to persistence and adaptation to a changing environment. For example, the occurrence of gene flow across geographic selection mosaics increases the likelihood that polymorphisms are maintained in local interactions, and may contribute to the persistence of local interactions and the long-term maintenance of genetic variation within species (Gomulkiewicz et al. 2000; Thompson 2005). In addition, the erosion of geographic selection mosaics may eliminate perhaps the most important engine of speciation — geographically divergent selection among populations (Schluter 2000; Funk et al. 2006).

Strongly interacting species: their importance can be a curse

Strongly interacting species are often considered as those species that have the ability to alter system structure (Paine 1980). Although most discussion of strongly interacting species pertains to ecological interactions (e.g. keystone species), we have found that such species can also have very pronounced evolutionary effects on other species (Benkman & Siepielski 2004). For example, in the absence...
of a strongly interacting species, potential prey are likely to rapidly lose defences directed at them; more so than in the absence of a weakly interacting species. Other species such as competitors are also more likely to respond evolutionarily because of evolutionary changes in their formerly shared prey and the absence of a competitor, and be even more susceptible to the introduction of the strongly interacting species.

Particularly dramatic examples of the adverse effects of introducing strongly interacting species include introduced predatory mammals causing numerous bird extinctions on oceanic islands (Couchamp et al. 2003; Blackburn et al. 2004), but also cases that qualify as more local introductions such as the introduction of fish into fishless alpine lakes in the Sierra Nevada, California that have caused severe reductions or local extinctions of frogs Rana muscosa, some benthic macroinvertebrates and large zooplankton (Knapp et al. 2001). Strongly interacting species are also known for their indirect effects that cascade through the community (i.e. keystone species; Paine 1966; Carpenter et al. 1985; Estes & Duggins 1995).

Indeed, because of these strong effects, especially of top predators, some have argued for the importance of protecting large mammals that act as keystone predators in communities (Terborgh et al. 1999). However, other mammals beside predators also have strong direct and indirect effects especially on land. We have already mentioned some effects of the granivorous red squirrel, and later we will discuss some of their other important direct and indirect effects. Kangaroo rats (Dipodomys spp.) are granivores in the deserts of North America that alter plant assemblages by differentially preying upon large-sized seeds, and one species of kangaroo rat (D. spectabilis) builds large burrow mounds that further alter community composition and ecosystem processes (Brown 1998). Small granivorous mammals are also known to affect plant assemblages in temperate deciduous forests (e.g. Ostfeld et al. 1997). A number of studies indicate that herbivorous mammals have a considerable impact on the composition of plant assemblages (Owen-Smith 1987; Paine 2000; Howe et al. 2006). For example, large ungulate herbivores have major direct effects on plant assemblages, which have substantial indirect effects on the animal communities as well (Côté et al. 2004; Ripple & Beschta 2006b; Pringle et al. 2007). Although there is some disagreement as to the relative importance of insect and vertebrate herbivory on plant population dynamics (Crawley 1989; Bigger & Marvier 1998), mammalian herbivory, unlike insect herbivory, commonly alters floristic composition (Crawley 1989; Paine 2000). In further support of the strong impacts of mammalian herbivores, the presence of native vertebrate (nearly exclusively mammals) herbivores much more than invertebrate herbivores limits the success of introduced plants (Parker et al. 2006). Consequently, we agree with Terborgh and others (Terborgh et al. 1999; Soulé et al. 2003) that keeping strongly interacting species in the community should be a conservation priority and when they have recently been extirpated that re-introducing them is potentially a valuable conservation strategy.

However, the strong impacts that are so crucial for shaping the structure of communities can lead to rather adverse consequences from the introduction of strongly interacting species when the communities have evolved in their absence even for a relatively brief time such as the past 9000 years (e.g. red squirrels introduced onto Newfoundland). The numerous examples of rapid evolution (Thompson 1998) and geographic selection mosaics (Thompson 2005) further this concern. Thus, we do not agree that introducing strongly interacting species (or surrogates for them) after they have been absent for thousands of years, which is sufficient for considerable evolutionary responses, is a worthwhile conservation strategy (contra Donlan et al. 2006). This is unlike and should not be equated to the benefits of, for example, re-introducing gray wolves (Canis lupus) to Yellowstone National Park 70 years after they were extirpated (Ripple & Beschta 2006a).

Strongly interacting species: the age of mammals

If avoiding the introduction of strongly interacting species is a good conservation strategy (as is avoiding their extinction in native habitats), it would be helpful if we could anticipate which species are likely to be strongly interacting. In aquatic systems, fish often have keystone effects (Carpenter et al. 1985) and when introduced have caused numerous extinctions (Witte et al. 1992; Knapp et al. 2001). On land, ants have diverse and important affects on communities (Hölldobler & Wilson 1990; pp. 1–2), with the introduction of certain ant species (e.g. Argentine ant) causing declines of other species with adverse affects on seed dispersal and plant communities (Christian 2001; see Holway et al. 2002a for a review on ant introductions).

Here we would like to emphasize mammals. Mammals, especially as top predators, have strong effects on communities on both land and in water (Estes 1996; Terborgh et al. 2001; Springer et al. 2003; Johnson et al. 2006), and their introductions have often led to extinctions (Couchamp et al. 2003; Cox & Lima 2006) and massive impacts on ecosystems (Couchamp et al. 2003; Croll et al. 2005). An indication of the ecological importance of mammals (in terms of their energy transfer/consumption) and the potential strength of their species interactions is their relatively high population densities compared to birds, which are the other taxon with high mass-specific energy demands. Mammals tend to occur at population densities and consume energy at rates that are at least an order of magnitude greater than that of birds for any given body mass and there are no extant birds comparable to the larger...
mammals (Silva et al. 1997). A much stronger ecological (conservation) impact of mammals relative to birds is supported by data on their introductions. The frequencies at which impacts are detected on other species from herbivory and predation are over an order of magnitude greater for introduced mammals than for introduced birds (Table 1). Moreover, the impact of introduced mammalian herbivores on native plants is greater than that of introduced invertebrates (Crawley 1989; see also Ebenhard 1988). A stronger ecological impact would presumably result in a greater evolutionary impact on other species (e.g. Steinberg et al. 1995; see also Callaway et al. 2005). We return to the diverse impacts of red squirrels as a clear example.

Geographic variation in the presence of red squirrels has diverse effects in lodgepole pine forest ecosystems, which dominate some 20 million ha in North America. First, selection by red squirrels leads to a reduction in the frequency of serotiny in lodgepole pine (the retention of seeds in cones until they are heated such as by a fire; Benkman & Siepielski 2004). Because the frequency of serotiny influences the density of pine seedlings after a fire (Table 2), which in turn affects subsequent plant and animal communities, and biogeochemical processes (Tinker et al. 1994; Turner et al. 2003), red squirrels act as ‘keystone selective agents’ (Benkman & Siepielski 2004). Squirrels also remove a large fraction of the cones, so that after a fire the densities of seedlings are up to 2.5 million per hectare in the absence of squirrels (Table 2) compared to only 3–4 and up to 211 000 seedlings per hectare in areas having squirrels (Table 2; Tinker et al. 1994; Turner et al. 2003). In the Cypress Hills, the introduction of red squirrels has caused a decrease in the canopy seed bank (Benkman 1999) so that following the next stand-replacing fire the density of seedlings will be reduced considerably. In time, selection by red squirrels will presumably cause the frequency of serotiny and thus the density of seedlings following fires to further decrease with concomitant effects on succession and ecosystem processes. Second, as mentioned earlier, the introduction of red squirrels into the Cypress Hills has led to the extinction of a distinct crossbill that owed its existence to the absence of red squirrels. Third, the introduction of red squirrels into the Cypress Hills has apparently caused a reduction in the abundances of breeding birds that nest in sites susceptible to predation by red squirrels (Siepielski 2006). In short, the local introduction of one strongly interacting species has tremendous ecological and evolutionary consequences, many of which would go unnoticed without careful study.

Fortunately, most introductions of mammals have been deliberate (Couchamp et al. 2003), thus with care we should be able to reduce if not eliminate them (see Jeschke & Strayer 2005 for cessation of intercontinental introductions). However, local and intentional introductions of large mammals continue. For example, the Colorado Division of Wildlife is currently (2006–2007) introducing moose into areas (e.g. Grand Mesa, Colorado) south of their native distribution. This is occurring in spite of studies to the north (Wyoming) showing that moose occurring in areas where predators had been largely extirpated (their potential predators have also been extirpated from Colorado), over-browse willows (Salix spp.) and thereby causes a considerable reduction in migratory songbird populations (Berger et al. 2001). This appears to be a representative and, unfortunately, an all too frequent example of how mammals are still being introduced (e.g. Cox et al. 1997).

Conclusions

Local introductions should often be successful because abiotic conditions are likely to be suitable and potential prey species may have lost defences. The longer the time the community has evolved in the absence of the introduced species and the stronger it interacts with other species, the more likely the introduced species will have pronounced consequences on other species and even ecosystem processes. Mammals in particular, and especially those with limited dispersal abilities, should not

Table 1 The percentage of 1559 introductions of 330 species of birds and mammals causing a negative impact from herbivory (including habitat changes) and predation (data from Ebenhard 1988).

<table>
<thead>
<tr>
<th>Introduced taxa</th>
<th>Herbivory</th>
<th>Predation</th>
<th>Total effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birds</td>
<td>0.4</td>
<td>1.4</td>
<td>1.8</td>
</tr>
<tr>
<td>Mammals</td>
<td>20.0</td>
<td>17.0</td>
<td>37.0</td>
</tr>
</tbody>
</table>

Table 2 The frequency of serotiny and postfire seedling densities for Rocky Mountain lodgepole pine (Pinus contorta latifolia) in (A) an isolated mountain range without red squirrels Tamiasciurus hudsonicus (serotiny data from Benkman & Siepielski 2004; seedling density data from Newsome & Dix 1968 measured prior to the introduction of red squirrels in 1950) and (B) in three areas within Yellowstone National Park where red squirrels are present (data from Turner et al. 2003).

<table>
<thead>
<tr>
<th>Location</th>
<th>Pre-fire stand serotiny (percentage of lodgepole pine)</th>
<th>Post-fire lodgepole pine seedling density (stems/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>92</td>
<td>2 500 000</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>211 000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2 300</td>
</tr>
<tr>
<td></td>
<td>< 1</td>
<td>600</td>
</tr>
</tbody>
</table>
be introduced because they generally have considerable ecological and likely evolutionary impacts. Although an important conservation strategy is to re-introduce strongly interacting species if they have been extirpated recently, it is unwise to introduce them (i.e. the rewilding idea of Donlan et al. 2006) if they have been absent for time periods sufficient for considerable evolutionary change (e.g. often only a few thousand years). The remaining community members will likely have evolved considerably in the absence of the strongly interacting species, which facilitates its introduction but more importantly increases the vulnerability of the existing community members.

Acknowledgements

National Science Foundation grants (DEB-0455705 and DEB-0515373) to C.W.B. and an Environmental Protection Agency GRO Fellowship to T.L.P. provided financial support during the writing of this manuscript.

References

Craig Benkman is an evolutionary ecologist and professor at the University of Wyoming who is increasingly using his research to address conservation-related issues. Both Adam Siepielski and Thomas Parchman are graduate students finishing their dissertations in Benkman’s lab. Adam is interested in how community context influences micro- and macroevolutionary processes, particularly those related to coevolution. Tom’s research involves the interface between ecology, evolution, and genetics with a focus on coevolution and adaptive radiations.