A Systematic Optical Study of Phonon Properties in Optimally Doped Bi₂Sr₂CaCu₂O_{8+δ} Single Crystals

J.J. Tu¹, C.C. Homes¹, G.D. Gu² and M. Strongin¹*

¹Department of Physics, Brookhaven National Laboratory, Upton, New York 11973

²School of Physics, The University of New South Wales, P.O. Box 1, Kensington, New South Wales, Australia 2033

Infrared spectroscopy is often used to investigate the question of electron-phonon interaction in 'bad' metals, particularly in high T_c cuprates, because both the electronic properties and phonon properties can be studied simultaneously. In view of the renewed suggestion that charge-phonon coupling is the mechanism for superconductivity in high T_c cuprates, charge-phonon interaction needs to be examined more carefully in these systems. Previously, the problem of phonon screening has been examined in optimally doped Yba₂Cu₃ $O_{6.95}$ [1]. In this work, a systematic study of infrared-active phonons is carried out for optimally doped Bi₂Sr₂CaCu₂ $O_{8+\delta}$ (OP Bi2212) single crystals along c-axis as well as in the ab-plane. Because of the high signal-to-noise ratio achieved using our in situ evaporation technique, infrared-active optic phonons have been observed for the first time in the ab-plane for OP Bi2212. Similar to the previous results, there is only a weak dependence of the conductivity on the direction of the E-vector within the ab-plane. However, strong phonon anisotropy has been observed in our ab-plane conductivity measurements despite the fact that the lattice parameter shows little difference along a or b-axis. Particularly, the mode at 477 cm^{-1} is only observed with E-vector parallel to a-axis but not with E-vector parallel to b-axis while the 630 cm⁻¹ mode is present in both polarizations. More interestingly, there is a mode at 310 cm⁻¹ for E-vector parallel to b-axis (but not a-axis) that shows up as an anti-resonance in σ_1 indicating that this mode is coupled to the charges in the system. The observed phonon anisotropy is presumably related to the extra Bragg peaks observed along b-axis for OP Bi2212 in both X-ray and neutron experiments.

*Supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.

[1] C. C. Homes et al., Phys. Rev. Lett. 84, 5391 (2000).