Grüneisen parameter of \mathbf{D}-doped $\mathrm{Nb}_{37} \mathrm{Ti}_{63}$ at temperatures below 10 K

C. Köckert, S. Abens, U. Escher, B. Kluge, A. Gladun, S. Sahling, M. Schneider
Institut für Tieftemperaturphysik, TU Dresden, D-01062 Dresden, Germany

Glasslike anomalies of low-temperature thermal properties were observed for the polycrystalline alloys $\mathrm{Nb}_{37} \mathrm{Ti}_{63}$ and $\mathrm{Nb}_{37} \mathrm{Ti}_{63}$ doped with deuterium. A giant heat release effect was found in $(\mathrm{Nb}-\mathrm{Ti})_{92} \mathrm{D}_{8}$ corresponding to a distribution parameter of $7.5 \cdot 10^{45} \mathrm{~J}^{-1} \mathrm{~m}^{-3}$ and a freezing temperature of 52 K . After rapid cooling of the sample a length relaxation, obeying a quadratic dependence on the starting temperature and a logarithmic time dependence [1], was measured. The results fit to the standard tunneling model assuming a temperature and time independent Grüneisen parameter $\tilde{A}=-2.5$. A constant Grüneisen parameter is compatible with a constant deformation potential $\gamma=\partial \Delta / 2 \partial e$, but requires the derivative of the tunneling parameter λ with respect to a relative volume change e, to depend on the energy splitting E and tunneling splitting Δ_{0} as $\partial \lambda / \partial e=\tilde{A} E^{2} / \Delta_{0}^{2}$. For undoped $\mathrm{Nb}_{37} \mathrm{Ti}_{63}$ we could not detect a length relaxation and calculate a long-time Grüneisen parameter since it was below the sensitivity of our measurement.

We also measured the specific heat c and the thermal expansion α down to $\mathrm{T}=0.3 \mathrm{~K}$ and determined for the tunneling systems of the deuterium doped sample a constant Grüneisen parameter $\tilde{A}=3 \alpha / \kappa_{T} c=-57$. This Grüneisen parameter differs considerably from the value derived from heat release and length relaxation, indicating that the assumption of a constant distribution function for the tunneling states does not hold for this material. From specific heat measurements we determined a distribution parameter of $4.3 \cdot 10^{45} \mathrm{~J}^{-1} \mathrm{~m}^{-3}$ for $\mathrm{Nb}_{37} \mathrm{Ti}_{63}$. The results indicate the generation of a different kind of TLS by the addition of deuterium, that are characterized by a different value of γ. For both systems the thermal expansion coefficient exhibits a negative linear temperature term in the superconducting state dominating below 1 K .

In order to decide weather a length relaxation also exists for other glasses like vitreous silica and polymers, the sensitivity of our dilatometer has to be increased.
[1] U. Escher, S. Abens, A. Gladun, C. Köckert, S. Sahling, M. Schneider, Physica B 284288 (2000) 1159

