An Alternative Approach to the Calculation of The Electron-Phonon Interaction in Semiconductor Nanostructures

V.G.Tyuterev

Tomsk State Pedagogical University, 634050 Komsomolsky str., 75, Tomsk, Russia

The polar optical vibrations are essential for the transport properties in semiconductor nanostructures because they are the source of a strong electron-phonon interaction. The commonly used macroscopic models (see for [1] and the bibliography therein) treat the optical phonon displacements as a spatially smooth functions. Our calculation in the realistic three-dimensional lattice-dynamical model [2] reveals that the actual picture of phonon electric fields deviates from a commonly used conceptions. The anion-cation displacements in the finite wave-vector vibration depend on the unit cell's choice and so are not well-defined quantities in a continuum approximation. Actually it is the reason of the boundary conditions' incompatibility [1] at the interface in the superstructure's phonon problem. We offer the alternative macrocsopic approach based on the non-local dielectric screening theory. This method provides a regular way to obtain the continuum limit from the microscopic lattice dynamical equations and it properly takes into account the local field corrections [2]. The electron-phonon potentials actually appears to be the eigenfunctions of the dielectric matrix. The interface matching problem does not arise at all. In the dispersionless continuum model for a nanostructure we derive the closed and tractable analytical expressions both for the phonon frequencies and the electronphonon potentials. The connection of the long-wave irregular behavior of solutions with the geometry of a superstructure is essentially clarified. The problem of a short-range dispersion arises in the realistic models of nanostructures [1]. This problem also finds out the most natural way of solution in our approach and needs not any artificially-looking constructions like the so-called interface phonon fields [1]. We succeed to get a tractable analytical expressions for the phonon electric fields with the short-range dispersion included. The long-wave-phonon dispersion curves and the electron-phonon potentials are in the excellent agreement with those calculated for $GaAs_n/AlAs_m[001]$ superlattice in the elaborated lattice dynamical bond-charge model [2]. We believe that our results are to be useful for the solution of the carrier transport problem in the semiconductor superlattices.

 B.K.Ridley, O.Al - Dossary, N.C.Constantinou, and M.Babiker, Phys.Rev.B 50, pp. 11701– 11709 (1994).

[2] V.G.Tyuterev, J.Phys.: Cond.Matt. 11, pp. 2153–2169 (1999).