EFFECT OF STRONTIUM ON ELECTRICAL AND ATOMIC PROPERTIES OF Pb (Li₁ La₁ W₁) O₃ CERAMICS

B. Ravinder Reddy

Department of Physics, University College of Science, Osmania University, Hyderabad-500 007, INDIA.

The ultrasonic velocity (v), attenuation coefficient (α) and electrical resistivity was measured in the Polycrystalline samples of (Pb_x Sr_{1-x}) (Li_{1/4} La_{1/4} W_{1/2}) O₃, x = 0.0, 0.35, 0.075, 0.10 belonging to perovskite oxide ferroelectrics were prepared by conventional solid state reaction technique.

The X-ray analysis was done which confirmed the formation of the compounds. The Ultrasonic velocity and attenuation coefficient imply that the absorption of ultrasonic waves were found to be minimum at x = 0.035.

The measurement of dc resistivity (ρ) as a function of both applied electric field and temperature confirm that the compounds exhibit the negative temperature coefficient of resistance (NTCR) behaviour above 500K temperature.

It is concluded that the $(Pb_x Sr_{1-x})$ $(Li_{1/4} La_{1/4} W_{1/2})$ O_3 , x = 0.0, 0.035, 0.075, 0.10) compounds have orthorhombic structure at room temperature (~300 K). The doping of Sr^{2+} ions at the Pb-site affect the ferroelectic property of the parent compound. The 0.035 and above mole percentage of Sr^{2+} doping Lead Lithium Lanthanate Tungstate compound looses its ferroelectric property (and more absorptivities) Sr^{2+} doped compound shows a linear variation of dielectric constant with temperature.

This material can be used as good capacitive material in electronic industries in a wide temperature range. Above 500K, all the four compounds behave as negative temperature coefficient resistors (NTCR).