Section IV.5: Recurrence Relations from Algorithms

Given a recursive algorithm with input size n, we wish to find a Θ (best big O) estimate for its run time $T(n)$ either by obtaining an explicit formula for $T(n)$ or by obtaining an upper or lower bound $U(n)$ for $T(n)$ such that $T(n) = \Theta(U(n))$. This can be done with the following sequence of steps.

(a) Find the base cases and a recurrence relation for the algorithm.
(b) (1) Obtain an iterative formula for $T(n)$ if possible. Then one can use methods in Epp, chapter 8, or Section IV.1 of these notes or
(2) Obtain an upper or lower bound $U(n)$ if the iterative formula is difficult or impossible to obtain explicitly.

In Epp (section 8.2), there are examples of obtaining iterative formulas for $T(n)$ for simple cases like arithmetic or geometric sequences. Also illustrated are examples where familiar summation identities can be used to get iterative formulas.

When iterative formulas for $T(n)$ are difficult or impossible to obtain, one can use either (1) a recursion tree method, (2) an iteration method, or (3) a substitution method with induction to get $T(n)$ or a bound $U(n)$ of $T(n)$ where $T(n) = \Theta(U(n))$.
Examples of these methods are found in Cormen (pp. 54-61). Examples of each of these methods are given below.

Definition IV.5.1: Given a recursive algorithm (Definition in Section IV-1), a recurrence relation for the algorithm is an equation that gives the run time on an input size in terms of the run times of smaller input sizes.

Definition IV.5.2: A recursion tree is a tree generated by tracing the execution of a recursive algorithm. (Cormen, p. 59)

Example IV.5.1: For Example IV.1.2. in Section IV.1 (Summing an Array), get a recurrence relation for the algorithm and iterative formula $T(n)$. Use (a) an iteration method and (b) a recursion tree method. Get the Θ estimate of $T(n)$.

Solution: (a) $T(n) = T(n-1) + 1$, since addition of the n-th element can be done by adding it to the sum of the n-1 preceding elements, and addition involves one operation. Also $T(0)=0$. Therefore, $T(k) = T(k-1) + 1$ for k between 1 and n is the recurrence relation. Iteration gives $T(n) = T(n-1) + 1 = T(n-2)+1 +1 = T(n-3)+1+1+1 = ... = T(0)+1+1+...+1 = T(0) + n = n$. (At the last stage we have added one to itself n times). Therefore, $T(n) = \Theta(n)$.
Solution: (b) At each level of the tree, replace the parent of that subtree by the constant term of the recurrence relation $T(k) = T(k-1) + 1$ and make $T(k-1)$ the child. The tree is really a list here. It is developed from left to right in the diagram below.

<table>
<thead>
<tr>
<th>$T(n)$</th>
<th>1</th>
<th>1</th>
<th>...</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n-1)$</td>
<td>1</td>
<td>...</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>$T(n-2)$</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T(0)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

$T(n)$ is computed by finding the sum of the elements at each level of the tree. Therefore $T(n) = n$, and $T(n) = \Theta(n)$.

Example IV.5.2: Binary Search (recursive version)
The pseudo code for recursive binary search is given below.

Algorithm Recursive Binary Search
Input: Value X of the same data type as array A, indices low and $high$, which are positive integers, and A, the array $A[low], ..., A[high]$ in ascending order.
Output: The index in array if X is found, 0 (zero) if X not found.

Algorithm Body:

\[
\text{mid} := \left\lfloor \frac{\text{low} + \text{high}}{2} \right\rfloor
\]

if $X = A[\text{mid}]$ then $\text{index} := \text{mid}$
else if $X < A[\text{mid}]$ and $\text{low} < \text{mid}$ then call Binary Search with inputs X, low, $\text{mid}-1$, A
else if $X > A[\text{mid}]$ and $\text{mid} < \text{high}$ then call Binary Search with inputs X, $\text{mid}+1$, high, A
else $\text{index} := 0$

end Algorithm Recursive Binary Search

Derive a recurrence relation on Binary Search and get a Θ estimate of the worst case running time $T(n)$. Use a recursion tree method.

Solution to Example IV.5.2: One could count the number of comparisons of X to $A[\text{mid}]$. Binary Search is called on a subarray of length approximately $\frac{n}{2}$ and there are 3 comparisons in the worst case before a recursive call is needed again. So the recurrence relation is $T(n) = T(n/2) + 3$, or more specifically, $T(k) = T(k/2) + 3$ for input size $k \geq 2$. Also $T(1) = 3$.
The recursion tree is developed similar to that in Example 1. At each level, let the parent be the constant term 3 and the child be the term $T(k/2)$. The process is illustrated below.

\[
\begin{array}{cccc}
T(n) & 3 & 3 & \ldots & 3 & 3 \\
\uparrow & & & \uparrow & & \uparrow \\
T(n/2) & 3 & 3 & 3 & & \\
\uparrow & & & \uparrow & & \\
T(n/4) & \ldots & 3 & 3 & \\
\uparrow & & & \uparrow & \\
T(1) & & & 3 & \\
\end{array}
\]

The depth of the tree is approximately $\log_2 n$. Adding the values in the levels of the tree we get $T(n) \approx 3 \log_2 n$. Therefore $T(n) = \Theta(\log_2 n)$.

Example IV.5.3: Merge Sort

The pseudocode for Merge Sort is given in Epp, p. 529. Develop a recurrence relation and get a Θ estimate for this algorithm.

Algorithm Merge Sort

Input: positive integers bot and top, $bot \leq top$, array items $A[bot], A[bot+1], \ldots, A[top]$ that can be ordered.

Output: array $A[bot], A[bot+1], \ldots, A[top]$ of the same elements as in the input array but in ascending order.

Algorithm Body:

if $bot < top$ then do

\[
\text{mid} := \left\lfloor \frac{bot + top}{2} \right\rfloor
\]

call Merge Sort with input $bot, mid, A[bot], \ldots, A[mid]$

call Merge Sort with input $mid + 1, top, A[mid+1], \ldots, A[top]$

Merge $A[bot], \ldots, A[mid]$ and $A[mid+1], \ldots, A[top]$ [where Merge takes these two arrays in ascending order and gives an array in ascending order]

end do

end Algorithm Merge Sort

Solution to Example IV.3.3: For simplicity let the input size be $n = 2^k$, k a positive integer. Let $T(n)$ denote the run time. In the worst case of Merge, there are about n comparisons needed to determine the ordering in the merged array (actually $n-1$ since the last element need not be compared). Since we desire a Θ estimate and not an exact formula, we can assume n. In the best case there are $n/2$ comparisons in Merge. This algorithm is called recursively on two subarrays of length approximately $n/2$. Therefore, the recurrence relation is $T(n) = 2T(n/2) + n$, so for particular $k \leq n$,

\[T(k) = 2T\left(\frac{k}{2}\right) + k.\]
The recursion tree is developed below, using fact that, at each level of the tree, the parent node is the term not involving T and there are two children due to the term $2T(\frac{k}{2})$. The tree is developed as shown, going from left to right and top to bottom.

$$
T(n) \quad \longrightarrow \\
\begin{array}{c}
T(n) \\
T(n/2) \qquad T(n/2)
\end{array}
$$

$$
\begin{array}{c}
\frac{n}{2} \quad \frac{n}{2} \\
\begin{array}{c}
T(n/4) \\
T(n/4) \\
T(n/4) \\
T(n/4)
\end{array}
\end{array}
$$

The sum of the values at each level of the tree is n (m nodes times the value $\frac{n}{m}$ in each node). There are $k = \log_2 n$ levels since we can cut the array in half k times. Thus, the sum of the elements in all nodes of the tree is $n \cdot \log_2 n$. Therefore, $T(n) = \Theta(n \cdot \log_2 n)$.

Example IV.5.4: Given the recurrence $T(n) = T(\frac{n}{3}) + T(\frac{2n}{3}) + n$, get a Θ estimate for $T(n)$ using the recursion tree method.

Solution: The recursion tree is developed below.

$$
\begin{array}{c}
n \\
\begin{array}{c}
\frac{n}{3} \qquad \frac{2n}{3}
\end{array}
\end{array}
$$

$$
\begin{array}{c}
n \\
\begin{array}{c}
\frac{n}{3} \\
\frac{2n}{3} \\
\begin{array}{c}
\frac{n}{9} \quad \frac{2n}{9} \\
\frac{2n}{9} \\
\frac{4n}{9}
\end{array}
\end{array}
\end{array}
$$

The construction continues until we get to the leaves. We keep multiplying n by $\frac{2}{3}$ until $(\frac{2}{3})^k \cdot n = 1$. The longest possible path of this tree is of length k where $(\frac{2}{3})^k \cdot n = 1$, i.e.,
where \(k = \log_{3/2} n \). The sum of the values in each level of the tree is at most \(n \). The left part of the tree plays out before the right side; the length of the path from the root to the leaves can vary from \(\log_3 n \) to \(\log_{3/2} n \), depending on whether argument \(k \) in \(T(k) \) goes to \(k/3 \) or \(2k/3 \). One obtains \(T(n) \leq n \cdot \log_{3/2} n \) and \(T(n) \geq n \cdot \log_3 n \). By the fact that growth rate of a log function is independent of its base (Theorem II.5.8), we can conclude \(T(n) = O(n \log_2 n) \) and \(T(n) = \Omega(n \log_2 n) \). Therefore \(T(n) = \Theta(n \log_2 n) \).

The next two examples use the iteration method. Example IV.5.5 involves a convergent geometric series, and Example IV.5.6 is more complicated since the geometric series diverges.

Example IV.5.5: Given the recurrence \(T(n) = 3 \lceil n/4 \rceil + n \), show by an iteration method that \(T(n) = \Theta(n) \).

Solution: For simplicity, we shall use \(m \) for \(\lfloor m \rfloor \) since the recurrence is in terms of the floor function. The iteration proceeds as follows:

\[
T(n) \leq n + 3T\left(\frac{n}{4} \right) = n + 3\left(\frac{n}{4} + 3T\left(\frac{n}{16} \right) \right) = n + \frac{3n}{4} + 9 \frac{n}{16} + 27T\left(\frac{n}{64} \right)
\]

\[
\leq n \sum_{i=0}^{\infty} (3/4)^i = 4n \text{ from the formula } \sum_{i=0}^{\infty} (r^i) = \frac{1}{1-r} \text{ when } |r| < 1 \text{ (here } r = \frac{3}{4} \text{).}

(\text{The formula for } T(n) \text{ involves a decreasing geometric series with ratio } r = \frac{3}{4} \text{).}

Therefore, \(T(n) = O(n) \) (use \(C = 4 \) and \(X_0 = N_0 = 1 \) in the definition of big O). Also, \(T(n) \geq n \) since \(3T\left(\frac{n}{4} \right) > 0 \). So \(T(n) = \Omega(n) \) (use \(C = 1 \) and \(X_0 = N_0 = 1 \) in the definition of \(\Omega \)). By the definition of \(\Theta \) (section II.5), we have \(T(n) = \Theta(n) \).

Example IV.5.6: Given the recurrence \(T(n) = 3 \left\lfloor \frac{n}{2} \right\rfloor + n \), use the iteration method to get a big O estimate for \(T(n) \).

Solution: For simplicity, we shall use \(m \) for \(\lfloor m \rfloor \) since the recurrence is in terms of the floor function. The iteration proceeds as follows:

\[
T(n) = n + 3T\left(\frac{n}{2} \right) = n + 3\left(\frac{n}{2} + 3T\left(\frac{n}{4} \right) \right) = n + \frac{3n}{2} + 9 \frac{n}{4} + 27T\left(\frac{n}{8} \right) = \ldots .
\]

The coefficients form the terms of the geometric series \(\sum_{i=0}^{\infty} (r^i) \) where \(r = 3/2 \). Since
\[|r| > 1, \] the infinite series diverges. However, there are only finitely many terms in the sum. The sum terminates for the smallest integer \(k \) where \(2^k > n \) (the number of times we divide \(n \) by 2 is \(\log_2 n \)), i.e., when \(k \approx \log_2 n \). Since \(\left\lfloor \frac{n}{2} \right\rfloor \leq \frac{n}{2} \) we have

\[
T(n) \leq n + \frac{n^2}{2} + \frac{n^3}{4} + \ldots + \left(\frac{3^{\log_2 n - 1}}{2^{\log_2 n - 1}} \right) \cdot n
\]

\[
= n \cdot \sum_{i=0}^{\frac{\log_2 n - 1}{2}} \left(\frac{3}{2} \right)^i = n \cdot \left(\left(\frac{3}{2} \right)^{\log_2 n} - 1 \right) / \left(\frac{3}{2} - 1 \right) = 2n \left(\left(\frac{3}{2} \right)^{\log_2 n} - 1 \right)
\]

\[
= 2n \left(\frac{3^{\log_2 n}}{2^{\log_2 n}} - 2 \right) = 2n \left(\frac{3^{\log_2 n}}{2^{\log_2 n}} - 1 \right)
\]

\[
= 2 \cdot 3^{\log_2 n} - 2n
\]

\[
= 2 \cdot n^{\log_2 3} - 2n.
\]

In the last step, we used

\[(*) a^{\log_2 n} = n^{\log_2 a}, \]

which is derived in Section IV.6.

Since \(\log_2 3 > 1 \), we know that term \(n^{\log_2 3} \) dominates \(n \). From section II.5, we can conclude that \(T(n) = O (n^{\log_2 3}) \).

Note: We use standard properties of logarithms in this argument. We also use the identity \(\sum_{i=0}^{n} r^i = (r^{n+1} - 1)/(r - 1) \) when \(r \neq 1 \).

Note: The Master method given in Section IV.6 will give us a much easier way to do this problem.

Substitution method with induction

The next two examples use the substitution method with induction. The method is described as follows. We show \(T(n) = O(U(n)) \). Showing \(T(n) = \Omega(U(n)) \) is similar.

1. **Guess the form of a bound** \(U(n) \) **of** \(T(n) \).
2. **Assume by strong induction** that for some constants \(C \) and \(n_0 \), \(T(k) \leq C \cdot U(k) \) for all \(k \geq n_0 \) and \(k < n \). **Show that** for these values of \(C \) and \(n_0 \), \(T(n) \leq C \cdot U(n) \) **for all** \(n > n_0 \).
3. **Find a pair** \(C \) and \(n_0 \) that also satisfy the initial conditions (values of \(T(1) \), \(T(2) \), etc.).

These must satisfy the conditions in (2) and (3); therefore, the values may change.

4. **If the given form does not work**, try a different \(U(n) \) with same growth rate. If this fails, try a \(U(n) \) with a different growth rate.

Example IV.5.7: Find a \(\Theta \) bound for \(T(n) \) \(T(n) = T(n-1) + n \) and \(T(0) = 1 \). Use the substitution method with induction.
Solution: From Epp, section 8.2, one can get the iterative formula
\[T(n) = 1 + n(n+1)/2. \]
So we know that \(T(n) = \Theta(n^2) \). However, we show how substitution and induction works in this example

Assume \(T(n) \leq C \cdot n^2 \) for all \(n > n_0, \ k < n \), and find \(C \) and \(n_0 \) that work.

Using the induction assumption, we try to find \(C \) and \(n_0 \) where
\[
T(n) = T(n-1) + n \\
\leq C \cdot (n-1)^2 + n \\
= C \cdot (n^2 - 2n + 1) + n \\
= C \cdot n^2 - 2Cn + C + n \\
\leq C \cdot n^2 \text{ for all } n > n_0.
\]
This inequality implies that \(2 \cdot n \cdot C - C \geq n \), i.e., \(n \leq C \cdot (n-1) \) or \(\frac{n}{2n-1} \leq C \).

Since the expression \(\frac{n}{2n-1} \) is decreasing (verify by taking derivatives), we substitute 1 for \(n \) and must have \(1/(2-1) \leq C \), that is, \(C \geq 1 \). However, \(\textbf{no} \) \(C \) works for \(T(0) \), and \(T(1) = 2 \). For \(T(1) \leq C \cdot (1)^2 \) to hold, we must have \(C \geq 2 \). Putting together the constraints \(C \geq 1 \) and \(C \geq 2 \), we know that \(C \geq 2 \) works, and also that \(n_0 \geq 1 \) must hold.

So take \(C = 2 \) and \(n_0 = 1 \) in the definition of big O.

It is true that we did not need such a complicated procedure to solve Example II.5.7. However, many times one cannot easily get a closed form for \(T(n) \). Yet the substitution method with induction works. Example IV.5.8 illustrates this.

Example IV.5.8: Use the substitution and induction approach to show
\[
T(n) = 2 \cdot T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) + n, \text{ where } T(1) = 1, \text{ is } \Theta(n \cdot \log_2 n).
\]

Solution: Show that \(T(n) \leq C \cdot n \cdot \log_2 n \) for all \(n > k \geq n_0 \) and find a \(C \) and \(n_0 \).

Using the induction assumption and recurrence formula, one obtains
\[
T(n) \leq 2\left(C\cdot \left\lfloor \frac{n}{2} \right\rfloor \log_2 \left\lfloor \frac{n}{2} \right\rfloor \right) + n \\
\leq Cn \log_2 \left(\frac{n}{2}\right) + n \\
= Cn \log_2 n - Cn \log_2 2 + n \\
= Cn \log_2 n - Cn + n \\
\leq Cn \log_2 n \text{ if } C \leq 1.
\]
(We use properties of logs and fact that \(\left\lfloor \frac{n}{2} \right\rfloor \leq \frac{n}{2} \) in this derivation).
However, \(T(n) \leq C \cdot n \cdot \log_2 n \) is not true for \(n = 1 \), for \(1 \cdot \log_2 1 = 0 \). So we must choose \(n_0 \geq 2 \). Now, \(T(2) = 2T(1) + 2 = 4 \) and \(T(3) = 2T(1) + 3 = 5 \). We must pick \(C \) large enough that \(T(2) \leq C \cdot (2 \log_2 2) \) and \(T(3) \leq C \cdot (3 \log_2 3) \). Any \(C \geq 2 \) works. So we can take \(C = 2 \) and \(n_0 = 2 \) in the definition of big O.

Changing Variables

Sometimes one can do algebraic manipulation to write an unknown recurrence in terms of a familiar one. Then one solves the familiar one and writes the solution in terms of the original variable. Example IV.5.9 illustrates this.

Example IV.5.9: Solve \(T(n) = 2T(\sqrt{n}) + \log_2 n \).

Solution: Let \(m = \log_2 n \). Then this recurrence becomes \(T(2^m) = 2T(2^{m/2}) + m \). Let \(S(m) = T(2^m) \), i.e. \(S(m) = T(g(m)) \) where \(g(m) = 2^m \). So \(S(m/2) = T(2^{m/2}) \) and the new recurrence \(S(m) = S(m/2) + m \) is produced. This is the same form as Example IV.5.8; therefore it has the solution \(S(m) = \Theta(m \log_2 m) \). By the substitution \(n = 2^m \), we get \(T(n) = T(2^m) = S(m) = \Theta(m \log_2 m) = \Theta(\log_2 n \cdot \log_2 (\log_2 n)) \).

Exercises:

1. Use the recursion tree method to get a \(\Theta \) estimate, coefficient 1, for the recurrence
 \[T(n) = 2T\left(\frac{n}{2}\right) + n^2. \]
2. Use the recursion tree method to get a \(\Theta \) estimate, coefficient 1, for the recurrence in Example IV.5.5. You need to get the height of the recursion tree.
3. Use the recursion tree method to get a \(\Theta \) estimate, coefficient 1, for the recurrence \(T \)
 \[T(n) = T\left(\frac{n}{4}\right) + T\left(\frac{3 \cdot n}{4}\right) + n^2. \]
4. Use an iteration method (similar to Example IV.5.5) to get a \(\Theta \) estimate, coefficient 1, for recurrence the \(T(n) = 4T\left[\frac{n}{5}\right] + n \).
5. Use an iteration method (similar to Example IV.5.6) to get a \(\Theta \) estimate, coefficient 1, for the recurrence \(T(n) = 5T\left[\frac{n}{4}\right] + n \).
(6) Given the recurrence \(T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) + T\left(\left\lceil \frac{n}{2} \right\rceil \right) + 1 \), show that \(T(n) \leq C \cdot n \) for any \(C \) cannot be shown using an induction argument. Show \(T(n) = O(n) \) is correct by finding a \(C \) and \(b \) where \(T(n) \leq C \cdot n - b \) works. Assume that the initial condition is \(T(1) = 1 \).

(7) Solve the recurrence \(T(n) = T\left(n^{1/3}\right) + T\left(n^{2/3}\right) + \log_3 n \) using a substitution \(m \) in terms of \(n \) similar to that in Example IV.5.9. You will get a recurrence in \(m \) that is one of the previous examples. Solve it in terms of \(m \) and solve the given recurrence in terms of \(n \).